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Abstract—A sliding window technique in robotics-based image
processing applications is a common approach to path mapping
from extracted features. Mapping a path inside an image re-
quires finding a series of points representing the path. Previous
approaches find these points by sliding a window along the path
in fixed increments across one image dimension. After each slide,
the center of the window in the other dimension is adjusted so
that the window maximally covers the path in that area. This
approach, however, fails to map paths that experience sharp
curvature since the windows slide along only one dimension. The
method proposed herein uses a pseudo-derivative approach to
sliding windows that improves upon the traditional technique by
dynamically adjusting the windows along both image dimensions
during each slide. In this method, the directional components
of a vector representing the previous slide are used as a naive
estimation to perform the current slide. If this fails to map
the path, the vector direction is used to enlarge the window
dimensions. The method was tested in the domain of autonomous
vehicles as an approach for detecting road lane markings. The
algorithm proved more successful than previous sliding window
approaches on perspective mapped lane images.

I. INTRODUCTION

Path detection and modeling is an essential part of var-
ious robotics applications, such as lane keeping systems in
autonomous vehicle design [1] and Unmanned Aerial Vehicle
(UAV) road mapping [2]. Object detection within images is a
fundamental yet challenging task in applications of computer
vision, serving as the basis for several other high-level tasks
such as license plate localization [3] and facial/gesture recog-
nition [4]; however, many of these solutions implement a deep
learning model that requires substantial computational power
[5] [6].

The limitations associated with deep learning path mapping
motivate the development of simpler, naive image processing
methods. These methods have the potential to decrease the
overhead of computational costs. A common technique used
to map paths such as lanes is applying a series of Hough
transforms into an image [7]. However, this procedure is still
relatively costly when compared to some sliding window based
approaches in known domains where one is able to make
assumptions about the path space.

Such a sliding window path mapping algorithm is proposed
in [8]. In the domain of lane mapping, one can assume that the
paths begin at the bottom of the image, at certain positions.

Thus, windows slide along the image from these points in
fixed increments across a single image dimension (up); the
entire image need not be searched.

Following each slide, the window then adjusts in the other
dimension such that the window best encapsulates the path.
Although this method provides satisfactory results when ap-
plied to smooth, continuous curves, there are various open
issues that remain when using this technique:

1) Mapping paths with sharp curvature are not feasible.
2) Mapping discontinuous curves are also not feasible; the

windows get lost between markings.

Contribution

The contribution of this paper is an improvement of the al-
gorithm described above. The proposed algorithm uses sliding
windows but changes the way in which they slide so that the
windows can capture paths efficiently with sharp curvature and
discontinuous paths.

II. PROBLEM STATEMENT

In lane detection, path mapping starts with a binary image
containing the lanes, often perspective warped so that the x
and y image coordinates map linearly to distance in the real
world. Given such an image, a series of points must be found
along each lane in order to represent the path mathematically.

The sliding window algorithm discussed in section I accom-
plishes the waypoints calculation; however, its performance
remains poor with sharp curvature. A visualization of this
algorithm implemented as presented in [8] can be seen in
Figure 1. Another similar implementation can be found in [9].

In its state described above, the algorithm is unable to ac-
count for curvature above a certain threshold or discontinuous
lanes. Since the windows are restricted to slide vertically up
the height of the window, if no lane markings are detected
inside the window, it is nonetheless slid vertically again. This
causes the search window to overstep the lane in the image.
These failures can be seen in Figure 2, which shows the poor
tracking of the sliding windows on extremely curved lanes,
one of which has a dashed marking.



Fig. 1: A visualization of the sliding window algorithm from [8].

Fig. 2: The poor performance of the described sliding window
approach on curved lanes.

III. PSEUDO-DERIVATION METHOD

In order to improve upon the existing implementations,
the proposed approach changes the window slide from a
fixed vertical direction to a pseudo-derivative approach. First,
the initial points of the lanes are discovered using k-means
clustering on the bottom section of the image. Then, after
an initial upward slide, the previous slide vectors are used to
perform the current slide. We use a set step size and window
size to slide the window along the lane. To account for sharp
curvature in the road, we calculate a vector along which to
the shift the window. At first, this vector points in the vertical
direction but it changes its direction after re-centering itself
around road pixels it detects. In this manner, the window is not
simply shifted upwards before re-centering but moves along
the path. The vector along which the window slide acts as a
pseudo-derivative of the lane being mapped.

Figure 3 shows an example of this process. The gray dots
represent lane marking pixels in the image space. The previous
slide vector is a, while the center of the resulting search
window, α is shown by the left yellow circle. In order to
perform the current slide, a search window β slides along the
same vector, shown here as b. This window then re-centers
around the lane markings it captures resulting in the window
γ. The vector between the center of γ and α is thus c. The
final vector, d, used to place the next point along the lane,
the right yellow circle, is the weighted sum of b and c. The
weights are proportional to the number of lane marking pixels

detected in the corresponding search windows; therefore, a is
weighted more heavily.

Fig. 3: The improved sliding window algorithm.

In the event that the search window does not detect any lane
markings, it continues to move along its trajectory for a finite
path until it does. If it still does not, it repeats this process by
rotating the sliding vector within a threshold ±ε. The lane is
considered mapped if these also fail to detect points. Finally,
the average of the two-lane paths from detected lanes closest
to the bottom center of the image (where the vehicle is located)
is used to find the midpoints of the lane.

We tested this improved algorithm with the University
of Arizona’s autonomous research vehicle called the CAT
Vehicle (Cognitive and Autonomous Test Vehicle) [10] and
a stereocamera mounted on the top of the vehicle. Its results
on an image captured by the vehicle are shown in Figure 4.
Here, the centers of the search windows are shown in green.
The purple points are the midpoints of the lanes.

Fig. 4: The improved sliding window algorithm results on a real life
perspective transformed image.

All source code used for the work mentioned
in this paper are available open-source and can be
download from the github repository Lane Finder
https://github.com/catvehicle/Lanefinder.

IV. CONCLUSION

We propose an improvement to an existing algorithm used
for path mapping in lane detection. The improvement increases

'https://github.com/catvehicle/Lanefinder'
'https://github.com/catvehicle/Lanefinder'


the algorithm’s ability to map curving lanes and lanes con-
sisting of broken up lane markings. It does not sacrifice the
algorithm’s computational simplicity of beginning the path
mapping where we would expect to find lanes.
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