
Modeling Human Car-Following Behavior from
Demonstration with Recurrent Neural Networks

Iris Jones
School of Electrical Engineering and Computer Science

Washington State University
Pullman, WA, USA

iris.jones@wsu.edu

Megan Walter
Department of Computer and Information Science

University of Oregon
Eugene, OR, USA

mwalter2@uoregon.edu

Rahul Bhadani
Department of Electrical & Computer Engineering

University of Arizona
Tucson, AZ, USA

rahulbhadani@email.arizona.edu

Jonathan Sprinkle
Department of Electrical & Computer Engineering

University of Arizona
Tucson, AZ, USA

sprinkjm@email.arizona.edu

Abstract—The validity of simulation testing for autonomous
vehicles depends on the ability to accurately simulate human
driving behavior. This project seeks to train a model on an
individual’s driving data, and to test the ability of the model
to predict trajectories that replicate the driver’s style by using
the model in a realistic simulated environment. Specifically, we
deployed Recurrent Neural Network (RNN) modeling techniques
to create a black-box model of an individual’s driving behavior.
We use our RNN-trained model to simulate a human-driven
vehicle in the Robot Operating System (ROS) based CAT Vehicle
simulator for autonomous vehicle validation. We hope this work
is a step to improve testing environments for validating human
behavior replicating car-following models and thereby improve
testing environments for autonomous vehicles in general.

Index Terms—recurrent neural network, car-following models,
driving behavior, trajectory prediction, simulation

I. INTRODUCTION

Modeling human driving behavior is necessary to test
autonomous vehicles applications in simulation. While there
are many proficient drivers, it is difficult for a driver to
explain why or how they drive precisely enough to replicate
it in a model. This makes replicating human driving behavior
with rule-based car-following models difficult, and learning
from demonstration with a black box model an encouraging
approach, as there is no need to rely on the drivers’ ideas of
how they drive in order to replicate their driving behavior.
To determine that a car-following model is accurate and
demonstrates the desired attributes of the human driver, testing
in realistic simulations is required.

In this paper, we chose to focus on a simple one-dimensional
car-following scenario. We train a simple Recurrent Neural
Network (RNN) model on data from one driver in one car in
car-following situations, and then test the model in simulation
with the Robot Operating System (ROS) [1] based CAT
Vehicle simulator [2].

This work was supported by National Science Foundation under award
number 1950359 REU Site: CAT Vehicle.

First we introduce RNNs in Section II. Section III reviews
current car-following models trained from demonstration. Sec-
tion IV outlines the problem definition. Section V explains our
methodology for cleaning and preparing the data set, the layers
and hyperparameters of our model, and the method with which
we use the model in ROS. Section VI displays our results on
how the model preformed, both with metrics and in simulation.
Finally, Section VII presents our conclusions

II. RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNN) are powerful in their abil-
ity to address sequential data, making RNNs ideal for working
with time series data. The network establishes correlations
between each data point and its recent predecessors. Connec-
tions between the nodes in the network form directed cycles
allowing the network to display temporal dynamic behavior.
That is to say, a data point recorded at time t is affected by a
data point recorded at time t−1 [3]. Long short-term memory
(LSTM) RNN frameworks in particular have been effective
in topics such as speech recognition [4], automatic music
composition [5], and more recently, predicting trajectories of
autonomous vehicles [6].

The LSTM architecture was initially introduced by Hochre-
iter and Schmidhuber in 1997. Conventional RNNs have issues
with gradient vanishing and gradient exploding. This creates
difficulties when trying to base predictions off of long-term
histories. LSTM models are able to avoid these issues [7].

III. LITERATURE REVIEW OF CAR-FOLLOWING MODELS

We focus on car-following models that learn their behavior
from real world data or human demonstration, as opposed to
rule-based models.

A. Recurrent Neural Networks

Recurrent Neural Networks (RNN) have been trained on
human driving data to propagate trajectories. In 2017, Morton

[6] used RNNs with Long Short-Term Memory (LSTM) [7]
cells to map information in the history about the ego and
lead vehicle such as headway distance, speed difference, and
the ego car’s speed and acceleration, to produce a probability
distribution of the ego’s acceleration. Ten second trajectories
were split into two seconds of data to initialize the model,
and then the acceleration was fed back in to determine the
ego vehicle’s trajectory. They found the RNNs replicated the
qualitative behavior of drivers well, but that LSTM relied pri-
marily on more recent information. Aside from car-following
models, RNNs have been used to predict human-driven car
trajectories at intersections, ranking the most likely solutions
[8]. Additionally, RNNs have been shown to characterize
driving behavior better than hand-picked feature engineering
methods [9] and that LSTMs in particular were successful
at identifying drivers by classifying driving maneuvers [10].
Although we are not classifying, our data was collected with
a single driver, which gives hope that the RNN would be able
to pick up on the particular driver’s style.

B. Inverse Reinforcement Learning

In 2015, Kuefler [11] used feature based Inverse Rein-
forcement Learning to learn driving styles from demonstration
as represented by a linear cost function. This was a step
away from time consuming manual tuning of parameters and
towards learning from demonstration, but it still relied on
feature selection in order to tell the model what features of
the trajectories were desirable to learn about as opposed to
the model being able to make those distinctions itself.

C. Generative Adversarial Imitation Learning

In 2017, Kuefler [12] expanded on their working with imita-
tion learning with Generative Adversarial Imitation Learning,
or GAIL, which attempts to learn a surrogate reward function
from the data by utilizing the feedback from a discriminator
which seeks to differentiate between the true data and the
generated data. This allows GAIL to learn the driving behavior
from the data, without the need for hand picked features or
domain knowledge. GAIL tended to provide more stable long
term trajectories than previous approaches.

Several modifications to GAIL have been proposed to im-
prove its performance in modeling human driving behavior, by
adding the capacity to model multi-agent behavior, incorporate
some domain knowledge, and capture latent variables that
classify driving styles [13]. The simulation used to test their
methods sampled real data, choosing one car from the sample
to control with the policy. The policy outputs acceleration and
turn rate values in response to observed features, creating
the car’s trajectory. All cars not controlled by the policy
followed their set path in the data, which means they were
not reacting to the decisions made by the ego vehicle, limiting
the simulations ability to reflect the real world and potentially
leading to more crashes than would otherwise occur if other
drivers could react.

IV. PROBLEM DEFINITION

We want to create car-following trajectories that resemble
the driving style of the driver who created our real world
data. We want to predict the car’s speed at the next time step
given the car’s speed, acceleration, and distance from the lead
vehicle for the last window of time. In the model implemen-
tation, we seek to predict ∆v, i.e. change in the velocity from
previous time-step to current time-step to determine the next
commanded velocity by adding predicted ∆v to velocity v
from the previous time-step, i.e.

∆v(t) = fR(vt−k−1,t−1,dt−k−1,t−1,at−k−1,t−1)

vcmd(t) = ∆v(t) + v(t− 1)
(1)

where ∆v(t) is predicted by our black-box RNN model fR; v,
d, and a are velocity vector, distance vector and acceleration
vector respectively over given time horizon (or history length)
k. vcmd is the commanded velocity for the current time-step.
Therefore, speed, acceleration, and lead distance for the last
window of time are the input to our model, and the change
in speed, ∆v, is the output. The ROS simulation is to be
designed in such a way that the trained RNN model will be
fed an initial window of values, and then the prediction will
be used to command speed to the simulated robotic vehicle,
and acceleration and lead distance will be updated according
to the environment and be fed back in, creating the trajectory.

V. METHODOLOGY

A. Dataset and Preparation

Our data set consists of 68 trips, the majority of trips
conducted in speedway conditions by a single driver, and each
trip varying in duration. After filtering out the trips that were
under 3 minutes (as they tend to have no movement in them),
there were 55 trips. A typical remaining trip lasts around 10-
20 minutes. The data contains many messages, but we chose
to use lead distance (the distance between the car and the
object in front of it), speed, and acceleration in the x direction
(forward and backward) as our features. The value to predict,
∆v, was calculated from the difference in speed. Since the
sensors do not all sample at the same instance or rate, we
interpolated and re-sampled at a rate of 50 hertz, which results
in time steps of 0.02 seconds, where each timestamp has a
value for all the feature variables. A time-step of 0.02 seconds
is reasonable as that is a close approximation of the average
time between sensor readings for the features we used. Lead
distance is a discontinuous variable so we only interpolated
and re-sampled on continuous sections, and we did not make
predictions across discontinuous sections. Discontinuous lead
sections where determined by jumps in value over a threshold
of 3 meters. When we later decided to only use data where
the lead car was present, a time gap over one second was
also considered discontinuous. The remaining features were
continuous, and when interpolating and re-sampling them,
their rate was matched to that of the lead. The interpolation
method used was the cubic spline interpolator from the scipy

package. In order to insure we did not predict over time gaps
in the data, gaps over 0.05 seconds where used to divide the
trips into sections, and state action pairs where only created
within and not across sections.

A single state action pair consists of a state, which rep-
resents the states of the feature variables for the last time
window, and an action, the change in speed the car makes
at the current time interval. The action, ∆v, when added to
the last speed in the state history results in the speed observed
in the data at the next time step. ∆v was chosen as the action
rather than speed because it was easier to use to command
the speed in the simulation. We also converted the data to
be in the same units as the simulation uses, specifically we
transformed speed into meter per second from kilometers per
hour to avoid conversions when using the model. We chose
a history length of 100 points, resulting in a time window
of two seconds, consistent with the length of history found
useful in [6]. Figures 1, 2 and 3 show the history of an
example state graphed for each feature, and the red point on
Figure 3 represents the action, ∆v, as the speed after adding
it to the previous speed. These graphs represent the histories
before scaling. All data in the state action pairs is scaled with
the min max scaling formula. For lead, the maximum value
used for scaling was the maximum value still in range, as
the lead sensor records 252 meters when there is no lead
vehicle in front and the true range is around 110 meters. All
the states are stored in one array, and the matching actions
are stored in a parallel array. The state array dimensions
are (number of points, history length, n features) and the
matching action array has dimension (number of points,). See
Figure 4 for an example of a single state in array format. Note
time is not an explicit variable in our data, but rather implicitly
implied in the histories of each state as each point in the state
is 0.02 seconds apart. After all the state action pairs were
created, test data was taken in multiple groupings, sampled
across various sections of the data, totaling 15% of the data.
Another 15% of the data was randomly selected and reserved
from the remaining state action pairs to serve as validation
data during training.

With each iteration of our model, we decided to filter the
data to use for training further. Model A’s training data has no
additional filters, and is considered the baseline. Model B’s
data was filtered for lead present, meaning only data where
the lead vehicle was in sensor range was included. Model C’s
data was filtered for speed nonzero, meaning only data where
the ego car was moving was included. Model D’s data was
filtered for both lead present and speed nonzero. As can be
seen in Table I, these filters significantly reduced the number
of state action pairs.

B. Model Layers

Our model is a LSTM Recurrent Neural Network. We chose
to use LSTM because it can learn temporal features with
shorter histories than a traditional feed-forward network and
it showed promise in [6]. Our model has two LSTM layers
with Relu activation and 64 and 32 neurons respectively,

Fig. 1. Example state lead distance history.

Fig. 2. Example state acceleration history.

Fig. 3. Example state speed history and action.

Fig. 4. Example of a single state.

TABLE I
DATA USED BY EACH MODEL

Model Description No. State Action Pairs
A Baseline 2665657
B Lead present 1181875
C Speed nonzero 1686755
D lead present and speed nonzero 749246

separated by a dropout layer with a dropout rate of 0.10 for
regularization. Early tests showed that two layers of LSTM
outperformed a single layer with more neurons. The final layer
is a Dense layer with one neuron in order to produce the
single value prediction. See Figure 5 for the model summary
provided by Tensorflow.

Fig. 5. Model Summary.

C. Hyperparameters

Parameters were initially chosen based on success of past
models and then tuned based on what was working best on
our trial runs with small data sets and limited features. We
used the standard Adam optimizer provided by Tensorflow
with default values (learning rate is 0.001). A callback function
was used such that training was cut short if validation loss did
not improve after 3 epochs. We saw marginal improvement
if any after 10 epochs, and therefore stopped training at 10
epochs (if the callback didn’t stop it sooner).

We tried both mean squared error (MSE) and Huber as the
loss function. Both loss functions were reasonably good at
ignoring outliers. In our initial tests, Huber looked to do a
better job of replicating the distribution of ∆v. Our data for
∆v is centered at zero, and Huber did a better job of centering

near zero than MSE on our initial tests. However, on the
larger data set with all our features, MSE and Huber both
seem to produce results off center by similar distances, just
in opposite directions. Huber tends to skew a little negative,
whereas MSE tends to skew positive (although it did skew
negative sometimes in our initial tests). As we will see later,
if there are too many negative ∆v predictions, the car can start
to drive backwards which is not desirable or a characteristic
exhibited in the training data at all. Even though Huber tends
to skew negative, it was closer in absolute value to the zero
centered distribution, so we used Huber as the loss function
for the models presented in this paper as A-D.

The Huber loss function is given by

Lδ(y, f(x)) =

{
1
2 (y − f(x))2, |y − f(x)| ≤ δ
δ|y − f(x)| − 1

2δ
2, otherwise

(2)

where the error = y − f(x) is the difference between the
truth and the prediction. The Huber loss function is quadratic
for small values of error, and linear for large values of error,
as distinguished by δ [14]. We used the default Tensorflow
value for δ of 1.0. The scaling factor of 1

2 is not included in
[14], however it is in the original definition [15] and in the
definition used by Tensorflow [16].

D. Transfer Learning

To test our model in a different environment, we used
ROS to create simulations. Specifically, we used ROS Melodic
with rosversion 1.14.6 as well as its Gazebo package which
visualized our tests. Additionally, we were able to take realistic
vehicle dynamics into account by using the CAT Vehicle
simulator.

Our simulation consisted of an ego car, which we controlled
through our model in a ROS node, and a lead vehicle. We
obtained the lead distance and velocity in real time through a
set of subscribers in the ROS node that recorded the values of
the command velocity and LIDAR sensor of the ego car. This
data, along with the ego car’s acceleration calculated from
the velocity, acted as the inputs on which the model made its
predictions.

The lead vehicle’s velocity was determined by a trip that the
data-collection car had taken. We recreated that trip’s velocity
by publishing the relevant speed messages to the lead vehicle.
In addition, we also ran separate tests for each of our models
with reduced lead vehicle velocity so that the lead vehicle
would remain in range of the ego car for a longer period and
allow us to further observe the effects of lead distance on the
models’ predictions.

As our model outputted scaled values, we used the min max
formula with the provided min and max values of the training
data to unscale the output of the model back into the correct
scale. Those unscaled predictions were then added to the ego
car’s current velocity and published through a publisher in the
ROS node to the ego vehicle as the command speed, and then
were fed back into the model as an input (after scaling again).
Figure 6 shows a visualization of the simulations set up in

Gazebo and Figure 7 shows the flow of data in the simulation.

Fig. 6. Ego car with laser sensor and lead vehicle in Gazebo.

VI. RESULTS

A. Model results from training

Our initial model, Model A, appeared to have a good loss
as seen in Table II, however it didn’t seem to capture any
car-following behavior in simulation, as will be shown in the
next subsection. In order to capture more of the car-following
behavior, we though it would improve the model to train only
on data where the lead car was actually present, because you
cannot exhibit car following behavior when there is no car in
front of you, which we did for Model B. The trade off here is
that the model will only be applicable when a car is in sensor
range, and will have unknown behavior if the lead car leaves
sensor range. As is shown in Table. II, this model had the
best test loss. (Training and validation loss are measured on
the last epoch in Table II).

TABLE II
MODEL LOSS EVALUATION

loss
Model Train Validation Test

A 2.81e−7 9.12e−7 2.85e−7

B 2.70e−6 1.33e−6 1.98e−7

C 5.18e−7 1.89e−7 7.82e−7

D 7.90e−7 2.44e−6 5.94e−7

The graphs of a very small portion of the test data can
lend some insight for each model. Figures 8 through 11 graph
some of the predictions made on the test data against the
true actions in the test data by model. The red dots and
blue dots at the same x-tick are the prediction and true speed
respectively for the same history. Since the test data was taken
in small sections, the blue dots before each red dot are also
the history (or portion of the history) that was used to make
those predictions. We will refer back to these graphs as we
talk more about each model’s performance.

We can see in Figure 8, the predictions made by Model A
tend to be slightly lower than the target value, although this
is exaggerated visually by the tight range of the y-axis scale.

Figure 9 shows Model B’s predictions are closer to the truth,
although the scale here plays apart in that visual. (Note that
this graph spans two test sections, the true history does not
ask the model to predict over that jump.) Ultimately, as we
will see in the next subsection, Model B still did not exhibit
the car-following behavior we were after.

We restricted the data further by ignoring any history that
has a speed of zero in it. We speculated this would help
because when a car is stopped at a stop light or parked for the
beginning of the recording, the car’s actions are not correlated
to the lead vehicle’s distance. It is possible we would be
excluding data where the car was stopped because of the
car in front of it as well, but the majority of nonzero data
seemed to be from the beginning of trips before the car had
started driving. Model C trained on data restricted to speed
nonzero only, while Model D trained on data restricted for
both lead present and speed nonzero. Training the Models C
and D on these reduced data sets lead to a larger loss, see
Table. II. However, this is reasonable because such a large
portion of the data contained zero speeds, and predicting no
change in speed when the car has not been moving is relatively
easy. Looking at the graphs of a potion of the test predictions
in Figure 10 and Figure 11 doesn’t display any noticeable
difference in the quality of predictions from each other, even
from the previous Model B. Ultimately, the simulation does
the best job of determining whether or not the model displays
car following behavior. As we will discuss, despite Models C
and D seeming similar when looking at these graphs and at
the test loss, they behaved quite differently in simulation.

B. Model results in simulation

As reducing the speed of the lead vehicle to one sixth of its
original speed allowed for us to take a closer look at the effect
of the lead vehicle on the ego car, all the results discussed in
this section will be referring to tests that used this reduced
lead vehicle speed.

From our tests with the lead vehicle’s velocity reduced to
one sixth of the original trip velocity, our baseline Model
A predicted primarily small negative values resulting in an
overall small and negative velocity (Figure 12). There was
a slight correlation between the lead distance and the ego
car’s command speed, as the lead distance increased, the
command speed did as well. However, the velocity of the ego
car remained between -0.25 m/s and 0 m/s meaning that the
change in velocity was negligible when compared to the speed
of the lead vehicle which stayed between 0 m/s and 2.5 m/s.
Visually, this was represented by the ego car rolling backwards
at an extremely slow pace. In addition, after the lead vehicle
had moved out of range of the ego car’s laser sensor, the
command speed converged at around -0.16 m/s and continued
that way for 50 seconds until the end of the simulation.

After adjusting the model so that it only trained on data
when the lead vehicle was present (Model B), we found
that, similar to Model A, the predictions led to a small,
negative velocity. Model B performed slightly better in terms
of the magnitude of the velocity in that the velocity remained

Fig. 7. Data flow of model in the simulation.

Fig. 8. Model A, sample of predictions on test set

Fig. 9. Model B, sample of predictions on test set

Fig. 10. Model C, sample of predictions on test set

Fig. 11. Model D, sample of predictions on test set

Fig. 12. Model A, command speed predicted by model and published to ego
car. Lead speed divided by six.

between 0 m/s and -0.85 m/s. We found that as the lead vehicle
drove further away, the velocity of the ego car grew larger and
more negative. Again, once the lead vehicle drove far enough
that the ego car could no longer sense it, the velocity converged
around −0.8 m/s.

The car controlled by the Model C, the model trained with
only non-zero values for speed, on the other hand, remained
positive throughout the entire simulation. The behavior of
Model C very much resembled that of the baseline model
with its positive values being the exception. The ego car’s
velocity remained between 0 and 0.25 m/s with the velocity
having a slight correlation to the lead distance. Just as the
previous models, once the ego car could no longer sense the
lead vehicle, the commanded velocity converged around 0.22
m/s and remained that way for 50 seconds, until the end of
the simulation.

Finally, we tested our Model D, which trained on data that
always had a nonzero velocity and a lead vehicle present. In
general, this model performed far better than the others and
was able to follow the lead vehicle for 5 minutes. The velocity
of the ego car remained between -0.2 m/s and 2.5 m/s which
nearly matched the range of the lead vehicle’s velocity between
0 m/s and 2.6 m/s. The connection between the command
velocity shown in Figure 13, and the lead distance shown
in Figure 14 becomes clear as the command speed closely
follows the same pattern as the lead distance, albeit scaled
down. These results strongly indicate that the model put a lot
of weight on lead distance as a factor in predicting the next
velocity. Furthermore, before the lead vehicle began to move,
the velocity published to the ego car was negative, but as the
lead vehicle began to drive, the ego car began to exhibit car-
following behavior. A possible reason for this could be that
the lead vehicle started too close to the ego car and the model
attempted to maintain an ideal distance. It is also important to
note that though the ego car was able to follow the lead car at
one-sixth speed, when the lead vehicle went faster (full speed,
half speed, third speed), the ego car was not able to catch up
in time to exhibit the same results as one-sixth speed.

The majority of our models converged on unrealistically
small values in simulation despite showing promising results
after evaluating them with test data. This may be due to
compounding error. During the validation process, the history

Fig. 13. Model D, command speed predicted by model and published to ego
car. Lead speed divided by six.

Fig. 14. Model D. Lead distance recorded by ego car. Lead speed divided
by six.

that the model took into account was from an actual trip that
the car took so if a prediction was too low or too high, it would
not directly affect the next prediction. The lack of correction
may have been the reason the results of the simulations did not
reflect the loss values found during the model loss evaluation.

Another discrepancy between the training data and the
simulation is that the maximum range of the sensor for lead
distance in the training data was around 110 meters, while it
was 81 meters for the sensor. Therefore, when the lead car
goes out of range in the simulation, the ego car was trained
to believe that that the lead car is still within range.

For Model D, though the model had comparatively better
results, it still was only able to follow the lead vehicle at low
speeds that would not be helpful in recreating human-driving
behavior. It is possible that additional data to train on would
increase the efficacy of the model.

VII. CONCLUSION

In this paper we trained an RNN car-following model and
demonstrated the insights ROS can provide for testing car-
following models. We showed that narrowing the data to
instances where the lead vehicle was in range and the car was
moving improved the model’s ability to react to the behavior
of the lead vehicle.

While we did show some car-following behavior in our last
model, the car did not reach high speeds and was not able to
stay in range of the lead vehicle for very long. Until the model
is able to more fully replicate the car-following behavior in a

general sense, it is not worth trying to compare the style of
how the model follows to how the original driver follows. The
model needs to exhibit good control of car following behavior
in general before it warrants a comparison on the specifics of
style.

Ideas for future work on this model include fine tuning of
parameters and adding more features, such as relative speed,
that convey information about the lead vehicle or turning
angle that would expand it from a one-dimensional to a
two-dimensional car-following model. Using more data and
pulling histories that do not overlap with each other might
also improve the model’s performance. Further testing can be
done with the simulation where the lead vehicle has a variety
of behaviors to see how the car follows, and more model types
can be tested such as GAIL. Generative Adversarial Networks
may be better at replicating the distribution than our RNN
model, which struggled to produce a ∆v distribution centered
at zero like the original data. The model could also be used on
a drive with a real car, predicting but not commanding speed,
in order to assess its performance on a real drive in real time.

ACKNOWLEDGMENT

The authors thank Co-Principle Investigator Dr. Ditzler.
Jones and Walter thank fellow participants of the Cognitive
and Autonomous Test Vehicle Research Experience for Un-
dergraduates for their camaraderie.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, p. 5, Kobe,
Japan, 2009.

[2] R. Bhadani, J. Sprinkle, and M. Bunting, “The CAT Vehicle Testbed:
A Simulator with Hardware in the Loop for Autonomous Vehicle
Applications,” in Proceedings 2nd International Workshop on Safe
Control of Autonomous Vehicles (SCAV 2018), Porto, Portugal, 10th
April 2018, Electronic Proceedings in Theoretical Computer Science
269, vol. 269, pp. 32–47, 2018.

[3] T. I. Poznyak, I. Chairez Oria, and A. S. Poznyak, “Chapter3 - back-
ground on dynamic neural networks,” in Ozonation and Biodegradation
in Environmental Engineering (T. I. Poznyak, I. Chairez Oria, and A. S.
Poznyak, eds.), pp. 57 – 74, Elsevier, 2019.

[4] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in Proceedings of the 31st International
Conference on Machine Learning (E. P. Xing and T. Jebara, eds.),
vol. 32 of Proceedings of Machine Learning Research, (Bejing, China),
pp. 1764–1772, PMLR, 22–24 Jun 2014.

[5] K. Choi, G. Fazekas, and M. B. Sandler, “Text-based LSTM networks
for automatic music composition,” CoRR, vol. abs/1604.05358, 2016.

[6] J. Morton, T. A. Wheeler, and M. J. Kochenderfer, “Analysis of recurrent
neural networks for probabilistic modeling of driver behavior,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 5,
pp. 1289–1298, 2017.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[8] A. Zyner, S. Worrall, and E. Nebot, “Naturalistic driver intention and
path prediction using recurrent neural networks,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 4, pp. 1584–1594, 2020.

[9] W. Dong, J. Li, R. Yao, C. Li, T. Yuan, and L. Wang, “Characterizing
driving styles with deep learning,” CoRR, vol. abs/1607.03611, 2016.

[10] Y. Wang and I. W. Ho, “Joint deep neural network modelling and
statistical analysis on characterizing driving behaviors,” in 2018 IEEE
Intelligent Vehicles Symposium (IV), pp. 1–6, 2018.

[11] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles for
autonomous vehicles from demonstration,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2641–2646, 2015.

[12] A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer, “Imitating
driver behavior with generative adversarial networks,” in 2017 IEEE
Intelligent Vehicles Symposium (IV), pp. 204–211, 2017.

[13] R. Bhattacharyya, B. Wulfe, D. Phillips, A. Kuefler, J. Morton,
R. Senanayake, and M. Kochenderfer, “Modeling human driving be-
havior through generative adversarial imitation learning,” 2020.

[14] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning Data Mining, Inference, and Prediction, Second Edition.
Springer New York, 2009.

[15] P. J. Huber, “Robust estimation of a location parameter,” Ann. Math.
Statist., vol. 35, pp. 73–101, 03 1964.

[16] “tf.keras.losses.huber.” https://www.tensorflow.org/api docs/python/tf/
keras/losses/Huber. Accessed: 2020-08-11.

https://www.tensorflow.org/api_docs/python/tf/keras/losses/Huber
https://www.tensorflow.org/api_docs/python/tf/keras/losses/Huber

	I Introduction
	II Recurrent Neural Networks
	III Literature review of car-following models
	III-A Recurrent Neural Networks
	III-B Inverse Reinforcement Learning
	III-C Generative Adversarial Imitation Learning

	IV Problem Definition
	V Methodology
	V-A Dataset and Preparation
	V-B Model Layers
	V-C Hyperparameters
	V-D Transfer Learning

	VI Results
	VI-A Model results from training
	VI-B Model results in simulation

	VII Conclusion
	References

