
Safer Adaptive Cruise Control for Traffic Wave
Dampening

1st Emily Baschab
Department of Physics
University of Alabama
Tucson, United States

efbaschab@crimson.ua.edu

2nd Savannah Ball
Department of Math
Monmouth College

Tucson, United States
sball@monmouthcollege.edu

3rd Audrey Vazzana
Department of Computer Science

Rose-Hulman Institute of Technology
Tucson, United States

avazzana@email.arizona.edu

4th Jonathan Sprinkle
Department of Electrical and Computer Engineering

University of Arizona
Tucson, United States
sprinkjm@arizona.edu

Abstract—Our goal is to develop an adaptive cruise controller
for vehicles at low speeds in stop-and-go traffic. Current adaptive
cruise controllers can use radar sensors to follow a vehicle at
high speeds (greater than 18 mph), but reach their limits if
the lead vehicle’s velocity dips below threshold, requiring the
driver of the host vehicle to resume control over the car’s speed.
Some cruise controllers adapt to stop-and-go traffic, but these are
mostly experimental and have yet to see widespread commercial
implementation. These experimental models often have issues
because of their limited data; consequently, the acceleration and
deceleration can be jarring and uncomfortable to passengers.
In contrast, because of our reliable sensor data, and the sensor
configuration unique to the CAT Vehicle, our cruise controller
will be capable of following cars at low speeds and functioning
continuously, even when the car is stopped.

This project has the potential to interest automobile companies
who could implement this technology in future automobiles. If
our technology were to be implemented in future automobiles,
it would make driving considerably more convenient for drivers.
This technology could also potentially reduce the number of
traffic accidents, as well as making drivers feel safer when
navigating traffic. However, if errors were to occur, they could
potentially put the car’s passengers at risk, as well as the
passengers in nearby vehicles.

Our project had a time frame of ten weeks during which we
were able to model an adaptive cruise controller and test it in a
simulation.

Index Terms—Adaptive Cruise Control, Vehicle Autonomy,
stop-and-go

I. INTRODUCTION

Adaptive Cruise Control (ACC) works by taking in data
from sensors and running that sensor data through an algorithm
that calculates the optimal distance, velocity, and acceleration.
Based on these optimal calculations, the host vehicle’s com-
puter can determine how much to increase the throttle, and
what action the engine of the vehicle should take, simulating

This opportunity is supported by the National Science Foundation under
awards IIS-1950359, CNS-1659428. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

that same decision a driver makes in pressing either the throttle
or the brake. The sensor data is usually gathered from either
a RADAR or a LIDAR sensor that can determine the relative
distance of the lead vehicle. From this relative distance, the
computer can calculate relative and absolute velocity.

The current state of commercially available cruise control,
though far more advanced than in the past, is still surprisingly
limited. Adaptive cruise control in modern cars either does not
operate under a certain speed threshold (less than 18 mph)
or, if it does, operates poorly, causing a jarring experience
for the driver and allowing cut-ins from other cars. This
behavior stems from the fact that ACC at low speeds is hard to
implement safely. In order to mitigate risks, cars brake more
abruptly and speed up more conservatively, making for an
unpleasant experience in stop-and-go traffic. For this reason,
there is much improvement yet to be made in the field of low
speed and stop and go cruise control for commercial vehicles.

II. BACKGROUND

A. RADAR and LIDAR Sensor Capabilities

Successful implementation of ACC systems depends crit-
ically on automotive components capable of detecting the
potential target vehicles ahead of the host vehicle and deter-
mining the kinematic characteristics of each target, such as
the distance and relative velocity. Detection of targets in most
ACC vehicles is done by either Light Detection and Ranging
sensor (LIDAR) or the older but still reliable Radio Detection
and Ranging sensor (RADAR). While Radar uses radio waves
to detect objects and determine range, angle and velocity,
Lidar does the same with pulsed laser light. When tested in
real-world driving scenarios, no significant differences exist
in the capabilities of either detection sensor technology, while
operating with the exact same environmental conditions (e.g.,
traffic patterns, roadway geometry, weather conditions, etc.)

RADAR is unique among sensors in that it is able to
calculate relative velocity using the doppler effect, rather than
differentiation. Consequently, RADAR calculations of relative



velocity are both more efficient and more reliable than those
of other types of sensors, including LIDAR. However, the
size of the wavelengths required for RADAR technology mean
that the maps it produces are very low resolution. RADAR,
while more efficient computationally, produces less data and
is generally less accurate than other sensor methods such as
LIDAR, especially in optimal weather conditions. [1]

LIDAR, on the other hand, while limited in situations with
inclement weather and more expensive than most alternatives,
is considered among the most high resolution and accurate
methods for three dimensional mapping in vehicle autonomy.
As this technology has become cheaper, it has become increas-
ingly prevalent in commercial cars. Because of its accuracy,
the CAT Vehicle uses LIDAR for terrain mapping and sensing.
[2]

Fig. 1. An image of the velodyne LIDAR sensor map from the CAT Vehicle
in a parking lot.

III. THE CAT VEHICLE

Further advances in the field of autonomous driving tech-
nology necessitate complete and comprehensive testing of
autonomous features. The CAT vehicle testbed at University
of Arizona provides a unique integrated simulation and phys-
ical platform for design, intensive testing, and real vehicle
simulation to effectively verify and validate design ideas in
a seamless workflow. It features transfer of controller design
from simulated environment to physical platform without
rewriting any component of the controller. The CAT Vehicle
test bed comprises the Robot Operating System (ROS) based
simulator that runs on the ODE physics engine and the virtual
environment using the Gazebo simulator to simulate vehicle
to vehicle interaction and traffic like situations.

Because the test bed supports code generation using open-
source C++ and Python APIs, distributed teams can transfer
MATLAB or Simulink generated designs and implement and
validate a proof of concept prior to accessing the physical
platform. Researchers can then demonstrate results on the
physical platform within 2 days. A typical autonomous vehicle
setup consists of a vehicle controller and sensors mounted
strategically on different substrates on the vehicle. The CAT
vehicle testbed contains three types of simulated sensors: Front
Laser Rangefinder, Velodyne LIDAR, and two side cameras

Fig. 2. A simulation of the scope and perception of the CAT Vehicle in the
ROS.

mounted on the left and right side of the vehicle. The physical
platform for the CAT Vehicle Hardware in Loop (HIL) is
a Ford Hybrid Escape vehicle mounted with a Front Laser
Rangefinder, Velodyne LIDAR, two side cameras and a GPS.
[3]

Fig. 3. Diagram of the CAT Vehicle sensor configuration.

Because of our unique sensor configuration on the CAT
Vehicle, we are able to overcome the typical sensory limita-
tions encountered in most commercial vehicles. As such, we
can test our potential models in real time traffic situations
without the danger normally inherent in such situations. This
has allowed us to develop a model which can afford to behave
less conservatively and which is more conducive to overall
passenger satisfaction and safety.

IV. SPACING POLICIES FOR ACC

There are two general categories of spacing policies used in
ACC. These are Constant Spacing Policies (CSP) and Variable
Spacing Policies (VSP).

Constant Spacing Policies are relatively simple: the desired
distance is assigned as a designated constant.

Variable Spacing Policies encompass any algorithm under
which desired vehicle distance varies based on external and/or
internal inputs. In most VSPs, a quantity known as Time
Headway is utilized. Time Headway is defined as the time
elapsed before the front bumper of the following car will pass
the current position of the front bumper of the lead car at its
current speed. [4]



In many models, the idea of using Constant Time Headway
(CTH), which means that the velocity is calculated to ensure
the Time Headway remains at a constant value, is used.

Typical ACC spacing policies tend to work very well at high
speeds where margins between cars are high and car behavior
is predictable. However, at lower speeds, these techniques tend
to result in a degradation in driving quality and experience for
passengers.

V. DESIGN DEVELOPMENT

To overcome the limitations of typical ACC, we created a
model specifically designed to function at low speeds.

A. Interpreting and Filtering Inputs

Upon receiving LIDAR data from the CAT Vehicle sensors,
the relative distance, velocity, and acceleration are calculated
by a distance estimator program and published to a ROS node

Fig. 4. A flowchart showing the progression of data after being processed by
the sensors.

The distance estimator iterates through every point received
by the laser sensors, determines the angle of the shortest point
received, and publishes this distance and angle as the relative
distance. It calculates relative velocity by taking the difference
in distances over time and acceleration by the difference in
velocities. All of these are published to a ROS node.

However, with such a large field of vision, the shortest point
does not always reflect the exact position of the lead car. For
instance, it might be a car in another lane. Additionally, it fails
to distinguish between separate entities in its line of sight. This
failure can cause problems when a car from an adjacent lane
changes lanes to be in front of the host vehicle. Because the
distance estimator registers this car and the previous leader
as a single entity, it will return a negative relative velocity.
The opposite problem occurs when the current leader switches
lanes and the relative distance and velocity both register a
drastic increase. Since both relative distance and velocity are
crucial to calculating a command velocity for the host vehicle,
it is imperative that these values be accurate and that the
extraneous values be filtered out.

When a relative velocity of +-10m/s occurs, this value is
filtered out and a replacement value is calculated by comparing
the current distance value with the previous one and computing
a relative velocity based on those two values.

drel(t− s) =
drel(t)− drel(t− s)

s
(1)

Where s represents the step size (1/75)
The results of this program are shown in the following

figures. The program and code can be found in the Appendix.

Fig. 5. The difference between the original and modified distance estimator
for relative distance.

Fig. 6. The difference between the original and modified distance estimator
for relative velocity.

VI. CONTROLLER THEORY

In order to follow at an appropriate distance and velocity, we
decided to split the domain of our speeds in two. The higher
speeds would require the host vehicle to follow at a distance
that would increase as the speed of the leading vehicle did. The
lower speeds, at which the host vehicle could stop relatively
quickly, would require that the host vehicle follow the lead
vehicle while maintaining a constant distance far enough away
to avoid a crash but close enough not to allow cut-ins. At
low speeds, desired distance can be less than one car length
(i.e. bumper-to-bumper traffic), but no less than the stopping



distance given the velocity of the host vehicle. At higher
speeds below the 18mph threshold, where the braking distance
at host vehicle velocity was greater than the relative distance
between the two vehicles, we used constant time headway to
determine our following distance. That is to say, the desired
distance varies with velocity, unlike at lower speeds where it
remains constant.

Therefore, for speeds below 18mph, there would be two
different models, one which governed behavior for traffic
where braking distance was less than relative distance and
one which governed speeds at which braking distance was
negligible (ie less than 5m or one car length). In order to
provide a better passenger experience, rather than using the
minimum braking distance for this calculation, we wanted to
use a realistic braking distance which was calculated as the
distance it would take a car to decelerate comfortably to the
passenger. However, because of the virtual environment, it was
hard to determine exactly what that deceleration would be. In
the current model, the minimum braking distance is simply
multiplied by a coefficient less than one and greater than zero.
However, in the future, we hope to obtain a more exact value
for reasonable acceleration.

The conditions to switch between the high speed and low
speed model were originally based only on the stopping
distance as compared to a constant (5m). However, when
relative distance was not taken into consideration to switch,
the cars would crash. Therefore, we devised a new idea; the
desired distance would be based on constant time headway
only when the relative distance was less than the absolute
velocity of the host vehicle. When this wasn’t the case, which
is true for most speeds where braking distance is negligible,
the car was instructed to decelerate immediately by setting
desired distance to a high constant. This prevented crashes,
but left several problems.

First, the sudden change in distance gain might create
deceleration values that were uncomfortable. However, testing
seemed to indicate this was not a major problem although
further testing on the real CAT Vehicle is needed to determine
this for certain.

Second, there are some speeds for which the CTHW cal-
culator produces a desired distance that is perhaps lower than
desirable. To fix this problem, a saturation block will need
to be implemented to enforce a minimum value on desired
distance from the controller component.

In the future we hope to adjust the final model presented
below to incorporate these changes

VII. FINAL MODEL

The most recent simulink model (figure 7), reflects the
theory described above.

First, relative distance, relative velocity, and host velocity
data are published from their respective ROS nodes, sourced
from the filtered distance estimator program. These values are
then fed into the controller, shown below (figure 8).

These values are fed into the distance calculator subsystem
which determines the desired distance. Subtracting the desired

Fig. 7. The final Simulink model.

Fig. 8. The controller subsystem.

distance from relative distance yields the quantity Distance
Gain: the desired change in relative distance. The Distance
Gain is added to the relative distance to get the new command
velocity for the vehicle.

Fig. 9. The desired distance switch subsystem.

The desired distance calculator compares relative distance
and host velocity. If host velocity is greater than or equal to
relative distance, the desired distance is set to a high constant,
causing the vehicle to decelerate. Using trial and error, it was
discovered that the value of this constant had an impact on
how quickly the vehicle decelerated. Forty meters seems to
produce a deceleration which is reasonable for passengers but



still safe and high enough to prevent crashes. Further testing
is required to determine whether this hypothesis holds. If
relative distance is greater than host velocity, a desired distance
based on constant time headway is calculated in the following
subsystem and output to the system as the desired distance.

Fig. 10. The CTHW subsystem.

The CTHW distance is calculated here simply by multiply-
ing the minimum braking distance by a gain greater than 1 and
adding it to a small constant (half car length). This ensures this
distance cannot get any smaller than the specified constant.

VIII. VERIFICATION AND TESTING

To test our data, before implementing it in the CAT Vehicle,
we used ROS (Robot Operating System). ROS is ideal for this
function because it can take data from a variety of inputs and
can output data at any given time in the simulation. To run
our ROS simulations, we took data from a bagfile; however,
ROS could run data from a simulator like simulink or from
real time sensor data, if necessary.

To verify the model, we implemented the distance and
relative velocity calculator and the controller for car behav-
ior discussed above into ROS nodes. These two were both
originally synthesized in Simulink, making the conversion to
ROS node very simple. Running ROS simulations necessitates
the creation of several ROS launch files, files which create and
run ROS nodes without the need for manual inception. The
creation of these files was a crucial step to verify our model’s
efficacy.

The launch files allow for multiple nodes to be implemented
through one command. In these files, topics can be remapped,
which allows for different inputs of data without having to
regenerate code.

The two main launch files we used were vehicles.launch and
321blastoff.launch. (vehicles.launch) Vehicles.launch placed
the vehicles in gazebo, and then 321blastoff.launch allowed for
us to test our controller. This launch file contained Audrey’s
filtereddistanceestimator node and Emily’s accmodelros node.
The code for each of these files can be found in the Ap-
pendices. After executing the launch files, we simulated the
behavior of a lead car with data gathered from a previous
experiment by executing the file stepvel.launch. This file
accessed data from a rosbag file which had been gathered
from a previous experiment in stop-and-go traffic and would
allow us to test our vehicle under these conditions.

With these files, we were able to determine the areas
where our model needed improvement and that our model was
behaving safely and could be run on the real CAT vehicle.

IX. RESULTS

The results produced from simulink revealed that the fol-
lowing car would emulate the velocity of the lead car while
maintaining an acceptable distance at low speeds. A sample
of the car’s behavior can be found in the following plot.

Fig. 11. Plot of the lead and following car behavior from Simulink model
data.

These results are corroborated by the results seen in the
Gazebo simulation. After placing the vehicles in gazebo, we
ran the 321blastoff.launch file and saw the host car move
forward to the lead vehicle and stop once it reached the extent
of the safest distance to the lead car. We then started the
lead vehicle and gave it a constant velocity and once the
lead vehicle was far enough away, the host vehicle began
accelerating to catch up to the lead vehicle. Once the host
vehicle reached the safest distance, it maintained a constant
velocity so that it would be following the lead car. They then
were both driving the same speed with a constant distance
between them for a few minutes. From observation of the
simulation in ROS, we noticed that the acceleration of the
host vehicle could be improved so that it wasn’t as slow and
cut-ins were less likely.

X. CHALLENGES AND FUTURE DIRECTIONS

We encountered several unanticipated issues in this project.
First, in order to calculate distance gain, we used a PID con-
troller block in Simulink. However, in practice, the numbers
being produced by this block were not valid and resulted in
the model receiving inputs which were unreasonably high.
We temporarily fixed this by adding a saturation block in
the controller and making the PID controller from individual
components rather than a prescribed block. However, the
reason for these high outputs remains unclear, in spite of much
debugging. Because we hope that using the PID block will



reduce windup error, we will continue looking into why it
produces high outputs and how to resolve this issue.

Additionally, the model itself, as discussed in the controller
theory section, needs modification to prevent the short dis-
tances and hesitancy to accelerate. We hope that real world
testing will give more insight into the extent of these issues.
Another issue we faced working virtually due to COVID-19
was time constraints. We were unable to test our code on
the actual CAT Vehicle. However, before taking that step,
it would have been necessary to take additional measures
to verify our code. Verification is important because it tests
the model in an effort to find errors that may occur so they
can then be fixed. Due to lack of time, we didn’t get to
use S-Taliro, but in the future this tool could help improve
our model. To use S-Taliro, a simulink model provides input
signals through input ports and is then used as a parameter.
The name of the model, along with initial conditions, the
constraints, and the MTL specification must be provided to
run the tool. Then numerous simulations run, which basically
go through every possible outcome that could happen, and
it searches for the smallest robustness value. The smaller
the value, the closer it is to finding a falsifying trace. If
the outcome is a negative value then this means there is a
falsification. It will keep searching until it finds an error or
until you kill the process. The trace can then be analyzed in the
simulink model to find where the problem occurred. For our
project, we would want to create parameters for the distance
between the vehicles as well as the maximum deceleration of
both vehicles. [5] While we did not have the time to write a
matlab script, nor did we finalize what our parameters would
be, we did investigate what previous researchers had used for
their parameters regarding safe distance between the vehicles.
Through all of the papers that we examined, we saw that at
the core, the distance had to be greater than half the velocity
of the first car. [6] We will need to do more research and
account for more variables in this parameter, as well as create
a parameter for the maximum deceleration of both cars. These
two will ensure safety, not only in normal driving conditions,
but also for emergency braking situations, as well as comfort.
With ACC, a major concern is that passengers will not find
it comfortable because it does not mimic a human driver’s
behavior enough. With these parameters, specifically the one
concerning deceleration, we hope to improve this and provide
a more enjoyable experience that makes passengers want to
use ACC.

With more time, we hope to implement verification, further
adjust our model, and test it on the actual CAT Vehicle.

XI. CONCLUSION

In this paper, the potential for a less conservative and more
passenger friendly ACC model was explored. In order to create
our model, we used two different systems, one dependent on
Constant Time Headway to determine desired distance and the
other following at a constant predetermined distance. Using
this dichotomy, we achieved some successful results. However,
we hope to refine the distance setting policy of our model in

future works, as well as undergo more thorough testing of
our model. In spite of many challenges due to COVID-19, we
believe, however, that this model has high potential for even
further success in stop and go and low speed traffic.

XII. ACKNOWLEDGMENT

We’d like to thank the National Science Foundation for
funding this research project in the summer of 2020. We
also want to thank the University of Arizona and the UROC
program for their efforts to make this project possible. Finally,
we would like to thank the Cognitive Autonomous Textbed
REU Program and our faculty mentor Dr. Jonathan Sprinkle
for his constant guidance and support on this project. To
all involved in these entities, and to Dr. Sprinkle, we’d like
to extend our extreme gratitude for making this opportunity
possible.

REFERENCES

[1] G. R. Widmann, M. K. Daniels, L. Hamilton, L. Humm, B. Riley, J. K.
Schiffmann, D. E. Schnelker, and W. H. Wishon, “Comparison of Lidar-
Based and Radar-Based Adaptive Cruise Control Systems Screen reader
support enabled,” in PSAE TECHNICAL PAPER SERIES, March 2000.

[2] J. Kocic, N. Jovičić, and V. Drndarevic, “Sensors and Sensor Fusion in
Autonomous Vehicles,” November, 2018.

[3] R. K. Bhadani, J. Sprinkle, and M. Bunting, “The CAT Vehicle Testbed:
A Simulator with Hardware in the Loop for Autonomous Vehicle Appli-
cations,” in 2nd International Workshop on Safe Control of Autonomous
Vehicles (SCAV 2018) EPTCS 269, 2018, pp. 32–47.

[4] C. Wu, Z. Xu, Y. Liu, C. Fu, K. Li and M. Hu, “Spacing Policies for
Adaptive Cruise Control: A Survey,” in IEEE Access, vol. 8, pp. 50149-
50162, 2020, doi: 10.1109/ACCESS.2020.2978244.

[5] Y. Annapureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems,”.

[6] M. Hekmatnejad, S. Yaghoubi, A. Dokhanchi, H. B. Amor, A. Shri-
vastava, L. Karam, and G. Fainekos, “SEncoding and Monitoring
Responsibility Sensitive Safety Rules for Automated Vehicles in Signal
Temporal Logic,” September, 2019, doi: 10.1145/3359986.3361203.


