
Adaptive HSL Filters and Inverse Perspective Transforms in
Lane Detection for Autonomous Driving*

Hannah Mason1, Landon Bentley2, Joe MacInnes3, Rahul Bhadani4 and Tamal Bose4

Abstract— A wide variety of lane-detection algorithm re-
lies on supervised machine learning algorithms that require
intensive computational power. In a situation where comput-
ing power is limited, performance is degraded and/or strong
assumptions are made for lane-detection. As a result, such
algorithms don’t work in generalized situations. The work
presented here is an experience report of the lane detection
algorithm for the autonomous driving experiment that describes
how adaptive HSL (hue, saturation, and luminosity) filters
are used in tandem with a perspective transform to detect
lanes in a variety of lighting and quality conditions, without
using supervised learning algorithms. This algorithm converts
an RGB image input to an HSL image and uses the median
brightness of the road to estimate how bright the lanes are.
Once the lanes are extracted, they are fed into an inverse-
perspective transform pipeline, giving a bird’s eye view of the
lanes, appeared in front of the car. The resulting image can be
fed to lane following algorithms, Model-Predictive Controller
block, or any generalized lane-following controller that requires
a priori to be updated on the fly.

I. INTRODUCTION

For full automation of self-driving vehicles, it is pertinent
to note that a vehicle will require itself moving from point A
to point B in an orderly fashion in par with traffic regulations
and driving laws. This requires an accurate localization of
vehicles in the order of centimeters with respect to the
road and more specifically the lane on which it is supposed
to drive. Even the most sophisticated instruments such as
Global Navigation Satelite Systems with IMU fusion fail to
provide such accuracy in some cases such as GPS-denied
environment, city locations with high GPS-obstructions and
due to other conditions such as multipath error and atmo-
spheric bias [1]. This task of lane-keeping can be improved
by lane-detection algorithms on the fly and making required
corrections locally and returning results without significant
delay. The presented work is an experience report that
focuses on this last leg improvement in self-localization of
the autonomous vehicle (AV) based on low-cost sensors that
don’t require intense computing power such as one required

*This research is supported by the National Science Foundation as a part
of CAT Vehicle Research Experience for Undergraduates (REU) program
through award 1659428.

1Hannah Mason is with Department of Electrical & Computer
Engineering, Lipscomb University in Nashville, Tennessee, USA.
hgmason@mail.lipscomb.edu

2Landon Bentley is with Department of Computer Science,
The University of Alabama, Tuscaloosa, Alabama, USA.
lcbentley@crimson.ua.edu

3Joe MacInnes is with Department of Computer Science, The College of
Wooster, Wooster, Ohio, USA. jmacinnes19@wooster.edu

4Rahul Bhadani and Tamal Bose are with Department of Electrical &
Computer Engineering, The University of Arizona, Tucson, Arizona, USA.
{rahulbhadani, tbose}@email.arizona.edu

by supervised learning algorithms utilized for making pre-
dictions.

Contribution

The most notable part of this work is detecting lanes
without any pre-trained features and demonstration of the
algorithm in less than ideal situations such as unclear/faded
lane-markings, curved roads and doesn’t make any assump-
tions that road surface needs to be flat. This is important
for testing an autonomous vehicle navigation scenario in
the resource-constraint environment or where the pre-trained
model of lane-feature is not suitable and/or available. The
algorithm was tested in a series of experiment, as a part of
Research Experience for Undergraduates (REU) program [2],
with the University of Arizona self-driving testbed called
as CAT Vehicle Testbed [3] on the city of Tucson’s road
in residential neighborhoods, parking lots and highways all
having varying road features.

II. RELATED WORK

It is trivial to say that lane-detection for end-to-end au-
tonomous driving is not a new concept. However end-to-
end driving is a multitude of tasks performed in a dynamic
environment with a wide variety of constraints, all requiring
the AV to perform computation in the regime of sample time
of the vehicle control loop. The trivial task of end-to-end
navigation goes back in the early 90s when it was more of
a concept than implementation [4], limited to specific kind
of test robots in laboratory environment [5] or assumptions
had been made for a certain kind of lanes [6], [7]. We found
an early work in characterizing statistical properties of lane-
marking, done by Kluge and Johnson in [8]. They used the
histogram of image intensity for bright lanes with a fairly
bright background that resulted in a bimodal distribution.
However, that was an early stage in the era of intelligent
vehicles and no attempt for automated driving was shown.
As computing power developed, researchers started using
more computationally expensive solutions such as ALVINN,
a neural-net based solution [9], [10] for autonomous driving.
However, authors used simulated road generators to train
neural-net and they mentioned that training on a real road is
logistically challenging and must be presented with a large
number of road conditions. Some other work in this area
using learning algorithms [11]–[17] also suffer from similar
kind of problem of training algorithms with a large number of
datasets that are logistically and financially inefficient. Later
in the millennium, academia and industry saw a surge in the
autonomous driving research that was fuelled by DARPA



Urban Challenge in 2007. One way to follow lane during
the grand challenge was to follow lane magnets as mentioned
in [18]. CMU’s BOSS vehicle in the urban challenge used
forward-looking LiDAR to detect road-edge detection for
developing the lane-keeping system. However, this kind of
method of detecting road-edge may not be very beneficial
when a road consists of multiple lanes. Nevertheless, their
method obtained promising results for a single lane with the
feature extraction and classification algorithms. Stanford’s
Junior was using RNDF (Road Network Data File, containing
a digital map of the road network coupled with aerial
imagery) provided as a part of the competition with modifi-
cation in lane-detection based on probabilistic measure. For
vehicle localization with respect to the road, their vehicle was
using LiDAR and infra-red sensors. Due to prior information
about road networks in terms of RNDF file, the problem of
self-localization of the vehicle was simpler during the Urban
Challenge. In commercial vehicles, lane-detection and self-
localization need to be carried using affordable sensors, most
common of them are camera-based. Combining this with a
need to have an extremely low false alarm rate for lane-
departure, even after more than a decade of Urban Grand
Challenge, lane-detection and following, the problem is still
not trivial. A detailed background of lane marking detection
using different sensing modalities can be found in [19]. A
common approach for lane-marking detection has been the
use of inverse perspective transform. In [20], authors demon-
strated the use of perspective transform on synthetic images
for lane-detection. In [21]–[23], results were demonstrated
to work with real road images. Although findings of this
method presented in these papers were satisfactory, when
we implemented these methods with our autonomous vehicle
Testbed, we found out that the algorithm faltered upon
providing input of faded lanes and/or when there were other
vehicles of yellow and white colors. A recent implementation
of similar kind of algorithms discussed in [24], [25] also
suffered from the same problems. A related implementation
for lane detection has been provided by researchers from the
University of Utah [26]. However, their algorithm produced a
surface plot, not an image, which prevents further processing.
We found out that it took approximately 16 seconds to
produce an output image on a regular personal computer with
a processing power equivalent of Intel Corei5. Our project
mentioned in this paper is built on the top of these two
works to create a more efficient algorithm that is capable
of working in faded lanes, curved lanes and robust to visual
noise captured by camera due to external agents such other
moving vehicles.

Rest of the paper is organized as follows: Section III pro-
vides preliminaries for inverse perspective transform. Section
IV describes our approach followed by implementation and
any issues we encountered. In the end, we provide conclusion
and lessons learned as a part of this project.

III. MATHEMATICAL PRELIMINARIES

The angle of view under which the scene is acquired
from the front camera mounted on the car suffers from

perspective transformation. This mandate the vision engineer
to design their lane-detection algorithm to take into account
the perspective transform effect when processing images
in order to weigh each pixel according to its information
content.

In the configuration where a front camera is mounted on
the top of a vehicle, as shown in Figure 1, with a fixed
angle θ with respect to longitudinal direction provides images
that are perspective transformed. With this prior information,
we can determine pixels appeared in the captured image
with respect to the world coordinates to obtain a bird’s eye
view image. This transformation is known as the inverse-
perspective transform.

Fig. 1: An illustration of front camera mounted on the vehicle for lane
image capture.

Let’s assume in camera’s coordinate system, each pixel
is represented by ~pc. Inverse transform mapping finds a
transform T that transforms every pixel ~pc into world co-
ordinates (i.e. bird’s eye view) that we call ~pw:

~pw = T · ~pc (1)

While mathematics behind the inverse perspective trans-
form can be found in [27], we took a different approach to
calculate the inverse perspective of the image. We calculated
M = T−1 a transformation that converts a bird’s eye image
to perspective image using control points (specified in terms
of source and destination matrix). With the help of this
transformation matrix, we use warping to convert perspective
images to bird’s eye images.

In order to so, we first identify the region of interest (ROI)
on the acquired image. The region of interest is specified on
a unit square as shown in Figure 2. We use four coordinate
points (A1, A2, A3, A4) to specify the ROI. Let’s call them
the source matrix. We also specify four coordinate points
(P1, P2, P3, P4) for bird’s eye view image, again on the unit
square. Let’s call them destination matrix. Every point, e.g.
A1 has x and y coordinate such that A1 ≡ (A1x, A1y).
Based on these two sets of coordinate points, we calculate
a transformation matrix that is used to warp perspective
image into a bird’s eye image. We use acquired image’s
original size as a scaling factor for source matrix, while
a fractional scaling of acquired image’s original size for
destination matrix. We explain it in detail in the following
paragraphs.

Let the acquired image’s height and width are hy and hx.
Further, let source matrix be

S ≡ {(Aix, Aiy)} i ∈ [1, 4]



Fig. 2: Source and destination matrices for calculating transformation matrix
for warping the perspective image to bird’s eye image.

and destination matrix be

D ≡ {(Pix, Piy)} i ∈ [1, 4].

Let’s denote dashed letters for scaled matrices e.g.

S ′ ≡ (A′1x, A
′
1y) ≡ (hx ·A1x, hy ·A1y) (2)

As mentioned earlier, we use fractional scaling for destina-
tion matrix:

D′ ≡ (P ′1x, P
′
1y) ≡ (ρhxPix, γhyPiy) (3)

where ρ and γ are fraction of acquired image dimension we
want to use to scale the destination matrix before computing
transformation matrix.

Let’s assume M be the transformation matrix that converts
bird’s eye to a perspective image:

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 (4)

For perspective transformation, we have m33 = 1. A
perspective transformation is obtained as follows [28]:

Pxi =
m11Axi +m12Ayi +m13

m31Axi +m32Ayi +m33

Pyi =
m21Axi +m22Ayi +m23

m31Axi +m32Ayi +m33

(5)

Since, we identify (Axi, Ayi) and (Pxi, Pyi) first, we are
required to calculate M . This is done by solving a system
of linear equations:

Ax1 Ay1 1 0 0 0 −Ax1Px1 −Ay1Px1
Ax2 Ay2 1 0 0 0 −Ax2Px2 −Ay2Px2
Ax3 Ay3 1 0 0 0 −Ax3Px3 −Ay3Px3
Ax4 Ay4 1 0 0 0 −Ax4Px4 −Ay4Px4
0 0 0 Ax1 Ay1 1 −Ax1Py1 −Ay1Py1
0 0 0 Ax1 Ay1 1 −Ax1Py1 −Ay1Py1
0 0 0 Ax2 Ay2 1 −Ax2Py2 −Ay2Py2
0 0 0 Ax2 Ay2 1 −Ax2Py2 −Ay2Py2
0 0 0 Ax3 Ay3 1 −Ax3Py3 −Ay3Py3
0 0 0 Ax4 Ay4 1 −Ax4Py4 −Ay4Py4




m11
m12
m13
m21
m22
m23
m31
m32



=


Px1
Px2
Px3
Px4
Py1
Py2
Py3
Py4


(6)

Then every pixel (Cx, Cy) ∈ ~pc can be transformed
to bird’s eye view pixel (Wx,Wy) ∈ ~pw using the warp
transformation:

(Wx,Wy) =(
m11Cx +m12Cy +m13

m11Cx +m12Cy +m13
,
m21Cx +m22Cy +m23

m11Cx +m12Cy +m13

)
(7)

IV. APPROACH AND IMPLEMENTATION

In this section, we detail our approach and implementation
of inverse perspective transform used for lane detection. We
begin with color filtering required for adaptive HSL in order
to identify lanes.

A. Color Filtering with Adaptive HSL Thresholds

First, we converted the acquired image in RGB color-space
to an HSL image. For implementation, we used OpenCV’s
inRange function in python to extract the lanes using upper
and lower limits on the HSL channels of the image. While
yellow lanes mostly have the same hue, even when faded
or in the shade, the lightness of white lanes can change
drastically. As mentioned earlier in the section II, previous
works such one mentioned in [24], couldn’t identify faded
lanes or lanes in the shade. When we reduced the lower
lightness limit to account for faded lanes, the algorithm
would struggle with images with clearly defined lanes. Bright
parts of the road that weren’t actually lanes were being
registered as lane markings. By altering the limit to account
for faded lanes, it no longer worked well for clearly defined
lanes - a problem we wanted to fix.

Thus a better method was needed to alter the lower
lightness limit based on the overall lightness of the image
to reduce the false positive. We performed an analysis on
a collection of images with faded and non-faded lanes, the
results of which are below in Table 1. In this analysis, we
calculated the median lightness of each picture and noted
down the average lightness for each category. Since the sky
and car hood tended to throw off the lightness median, we
cropped out two fifths and the lower fifth part of the image
prior to their analysis.

Category Average of the Median
Lightness

Well Defined Lanes 107.305
Faded Lanes 73.256

TABLE I: The average of the median brightness values for the images in
each category.

While the average lightness produces a similar result to the
median, some experimentation revealed the median lightness
to be a more accurate reference for troublesome images.
For example, a completely white or completely black car
in the image has a greater impact on the average lightness
of the image than on the median lightness. Thus the median
lightness was more reliable for our purposes of identifying
lane markings.



The images with faded lanes had significantly lower me-
dian lightness values than the images with clearly defined
lanes. After some trial and error, 1.8 times the median was
found to be an optimal lower lightness threshold for bright
images and 1.5 times the median was chosen to be a good
lower threshold for the faded and dark images. Images with
a median lightness of less than 75 were treated as faded,
otherwise, they were treated as bright. We also noted that in
an image with bright lanes, the lanes were more saturated
than the rest of the image. However, when the lanes were
faded, they were frequently the least saturated part of the
image. Thus, we used a lower saturation bound of 90 for
identifying bright lines whereas a higher saturation bound
of 90 for darker images. Examples of this method (after
applying inverse perspective transform, discussed in IV-B)
can be seen in Figure 3 and Figures 4 to 6.

Fig. 3: The application of the adaptive color filtering on a bright image.

Fig. 4: An image with faded and curved lanes.

Fig. 5: The adaptive HSL filters applied to Figure 4. While there is still
some visual noise in the image, the majority of the road that is not lane
markings is masked out. When the inverse perspective transform is applied,
the rest of the visual cancels out.

Fig. 6: The final result of the algorithm applied on the image in Figure 4.
Note that the lanes are accurately detected and the algorithm was also able
to capture the slight curve of the road.

B. Applying Inverse Perspective Transform

Previous works discussed in section II were unable to
handle curved lanes. Additionally, the program left unwanted
noise in the image which was difficult to consistently filter
out. We reproduced inverse perspective transformation based
on previous results in MATLAB and can be seen in Figure
7, Figure 8, and Figure 9.

Fig. 7: A sample image to be run through the MATLAB algorithm.

Fig. 8: The perspective transform of the image in Figure 7.

Fig. 9: The result of the color filters and Canny edge detection on the
image in Figure 8. Note the amount of white pixels in the image that are
not caused by the lane, and that it detects lanes that the car is not in.

Choosing Mapping Points to Calibrate the Perspective
Transform: Previous works in this direction were dependent
on the camera angle. Each time the camera is put on the car,
the source and destination matrix as discussed in section
III must be adjusted accordingly. If the camera is always
mounted on the car, this is not an issue after the first
calibration. But if the camera is constantly being taken down
and remounted on the car, this becomes somewhat of an
issue, as experienced frequently during Field Operation Tests



(FOTs). To calibrate, the car was put at one end of a straight
lane, that was at least 40 meters long and 3.7 meters wide,
which matches interstate regulations for lane width in the
United States. An image was taken from the camera and 4
points were chosen as the source matrix. Two points were
about 40 meters in front of the car, slightly to the right and
left of the lanes. Two points were right above the hood of
the car, also slightly to the right and left of the lanes. When
applying the inverse perspective transform, they should result
in a straight-looking lane. The points were adjusted until that
was the case. This process can be seen in Figure 10, where
the corners of the trapezoid represent the four points chosen.
Figure 11 is an image taken from the same camera position,
but where the lanes are farther to the side than they were
in the calibration photo. Note that the perspective transform
still works on this image. Figure 12 also shows that this
calibration works on curved roads.

Fig. 10: An ideal calibration image, where the trapezoid corners represent
the four points for the source transform. The left side is the original image
with the trapezoid overlaid, and the right side is the resulting perspective
transform. Note how the lanes are straight in the perspective transform.

Fig. 11: The perspective transform, calibrated in Figure 10, applied to
another image from the same camera position. Note that although the lanes
are not fully encapsulated in the trapezoid, the lanes are still detected and
shown in the perspective transform.

Fig. 12: The perspective transform, calibrated in Figure 10, applied to
another image from the same camera position. Note that the curve of the
road is maintained in the perspective transformed image.

Curvature in the Road: Once the camera is calibrated,
it can handle some variances in lane width and curvature
of the road, as seen in Figure 11 and Figure 12. Unlike the
previous work, which maps the points to the four corners
of the destination image, our program maps the points to
slightly inside the four corners of the destination image.
This slight change allows the program to handle curves in
the road efficiently, without allowing noise in the image.

Scaling: Note that the resulting image seems to squash
the y-axis down. We found out this was a nuisance when
translating the detected lanes from the resulting bird’s eye
image to physical waypoints for lane-following [29]. Thus
scaling coefficients ρ and γ as mentioned in Equation (3)
had to be calculated for use with a physical car. We used a
calibration image, seen in Figure 13 to determine a suitable
value of ρ and γ, where we had marked fixed increments on
the road in front of the car. The perspective transform of this
image can be seen in Figure 14.

Fig. 13: An image used for finding the scaling coefficients. Note the chalks
marks on the ground in front of the vehicle in 3 meter intervals.

Fig. 14: The perspective transform of the image in Figure 9. The chalk
marks and lanes were drawn over digitally before the transform, to make
them easier to read in the resulting image.

From Figure 14, we found that the scaling coefficients
were about 47 pixels per 3 meters vertically, and 248
pixels per 1.85 meters horizontally. Note that these scaling
coefficients will vary with image dimensions. While these
scaling coefficients will change each time the camera is
calibrated, we found that the change was small and was
able to be quickly corrected by trial and error, rather than
requiring an entirely new calibration image.

C. Using the Final Image for Lane Following

After calibrating our algorithms, we finalized source ma-
trix and destination matrix as

S ≡ {(0.565, 0.527), (0.463, 0.527), (.12, .9), (.91, .9)}

D ≡ {(.8, .2), (.2, .2), (.2, .8), (.8, .8)}

with ρ = 0.8 and γ = 1.0. The full pipeline for obtaining
bird’s eye image with clear lane-markings is shown in Figure
15. Ideally, our method should be used with a car with a
fixed camera. While suitable results were accomplished with



the University of Arizona’s CAT Vehicle, which required the
camera to be remounted frequently, a fixed camera should
provide more consistency. The resulting bird’s eye images
obtained from this method were given to another program
which fits a series of waypoints from the extracted lanes; see
our work [29] and [30] for more detail. These waypoints
were scaled using the aforementioned coefficients and sent
to a steering controller to drive the car. A live demo was
held where the car was successfully able to follow a curved
lane. We released a video reporting the overall experience of
the REU program along with the results from this paper in
[30].

Acquire Image Adaptive HSL Calibrate

Inverse Perspective
Transform 

Final Bird's eye view 
clear lane markings

Fig. 15: Overall pipeline used for obtaining bird’s eye view of clear lane
marking.

V. CONCLUSION AND FUTURE WORKS

In this work, we present a proof-of-concept for real-time
lane detection in autonomous driving with low computation
overheads. Our method doesn’t require any training, testing
and is remarkably good for situations that do not require
mounting-remounting of the front camera (which is more
likely to the case with commercial vehicles). It works well
with curved lanes as well as faded lanes. As a part of the
future work, we are hoping to extend this work to a scenario
where there are no lane-markings present on the road.

ACKNOWLEDGEMENT

This research was supported by the National Science
Foundation under award 1659428 and 1446435. Additionally,
we would like to thank Nancy Emptage for logistics and
facilitating the program.

REFERENCES

[1] E. Kaplan and C. Hegarty, Understanding GPS: principles and appli-
cations. Artech house, 2005.

[2] National Science Foundation, “ REU Site: Cognitive and Autonomous
Test Vehicles,” 2018. [Online]. Available: https://www.nsf.gov/
awardsearch/showAward?AWD ID=1659428

[3] R. Bhadani, J. Sprinkle, and M. Bunting, “The CAT Vehicle Testbed:
A Simulator with Hardware in the Loop for Autonomous Vehicle
Applications,” in Proceedings 2nd International Workshop on Safe
Control of Autonomous Vehicles (SCAV 2018), Porto, Portugal, Elec-
tronic Proceedings in Theoretical Computer Science, vol. 269, 2018.

[4] E. Dickmanns, “Computer vision in road vehicles–chances and prob-
lems,” in ITCS-Symposium on Human Factors Technology for Next-
Generation Transportation Vehicles, Amalfi, Italy, 1986.

[5] H. Frohn and W. Von Seelen, “Visocar: An autonomous industrial
transport vehicle guided by visual navigation,” in Robotics and Au-
tomation, 1989. Proceedings., 1989 IEEE International Conference
on. IEEE, 1989.

[6] G. Adorni, M. Bertozzi, and A. Broggi, “Massively parallel road/lane
detection,” in Proc. th Jut. Conference on Applications ofAdvanced
Technologies in Transportatzon Engmeermg AATTE,(Capri, Italy),
1995.

[7] J. Manigel and W. Leonhard, “Computer control of an autonomous
road vehicle by computer vision,” in Industrial Electronics, Control
and Instrumentation, 1991. Proceedings. IECON’91., 1991 Interna-
tional Conference on. IEEE, 1991.

[8] K. Kluge and G. Johnson, “Statistical characterization of the visual
characteristics of painted lane markings,” in Intelligent Vehicles’ 95
Symposium., Proceedings of the. IEEE, 1995.

[9] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Advances in neural information processing systems, 1989.

[10] T. Jochem, “Vision based tactical driving,” Ph.D. dissertation, Carnegie
Mellon University, 1996.

[11] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection using
gabor filters and support vector machines,” in 14th International
Conference on Digital Signal Processing, 2000, vol. 2. IEEE.

[12] X. Wen, L. Shao, Y. Xue, and W. Fang, “A rapid learning algorithm
for vehicle classification,” Information Sciences, vol. 295, 2015.

[13] D. Lieb, A. Lookingbill, and S. Thrun, “Adaptive road following using
self-supervised learning and reverse optical flow.” in Robotics: science
and systems, 2005.

[14] S.-Y. Oh, J.-H. Lee, and D.-H. Choi, “A new reinforcement learning
vehicle control architecture for vision-based road following,” IEEE
Transactions on Vehicular Technology, vol. 49, no. 3, 2000.

[15] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2015.

[16] M. Bojarski, D. Del Testa, D. Dworakowski, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to end learning
for self-driving cars,” arXiv preprint arXiv:1604.07316, 2016.

[17] R. Gopalan, T. Hong, and R. Chellappa, “A learning approach towards
detection and tracking of lane markings,” IEEE Transactions on
Intelligent Transportation Systems, vol. 13, no. 3, 2012.

[18] U. Ozguner, C. Stiller, and K. Redmill, “Systems for safety and
autonomous behavior in cars: The darpa grand challenge experience,”
Proceedings of the IEEE, vol. 95, no. 2, 2007.

[19] A. B. Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in
road and lane detection: a survey,” Machine vision and applications,
vol. 25, no. 3, 2014.

[20] Y. Shu and Z. Tan, “Vision based lane detection in autonomous
vehicle,” in Intelligent Control and Automation, 2004. WCICA 2004.
Fifth World Congress on, vol. 6. IEEE, 2004.

[21] M. Bertozzi and A. Broggi, “Gold: A parallel real-time stereo vision
system for generic obstacle and lane detection,” IEEE transactions on
image processing, vol. 7, no. 1, 1998.

[22] Y. Wang, E. K. Teoh, and D. Shen, “Lane detection and tracking using
b-snake,” Image and Vision computing, vol. 22, no. 4, 2004.

[23] K.-Y. Chiu and S.-F. Lin, “Lane detection using color-based segmen-
tation,” in Intelligent Vehicles Symposium, 2005. Proceedings. IEEE.
IEEE, 2005.

[24] K. Ficici, Simple Lane Detection, Hackster.io, 2018. [Online].
Available: https://web.archive.org/web/20190112194639/https://www.
hackster.io/kemfic/simple-lane-detection-c3db2f

[25] Curved Lane Detection, Hackster.io, 2018. [Online].
Available: https://web.archive.org/web/20190112194729/https://www.
hackster.io/kemfic/curved-lane-detection-34f771

[26] E. Johnson and R. Hamburger, Computer Vision Class Project,
University of Utah, 2007. [Online]. Available: https://web.archive.org/
web/20190112195129/https://pubweb.eng.utah.edu/∼hamburge/

[27] H. A. Mallot, H. H. Bülthoff, J. Little, and S. Bohrer, “Inverse
perspective mapping simplifies optical flow computation and obstacle
detection,” Biological cybernetics, vol. 64, no. 3, 1991.

[28] R. Szeliski, Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[29] L. Bentley, J. MacInnes, R. Bhadani, and T. Bose, “A pseudo-
derivative method for sliding window path mapping in robotics-based
image processing.” Tucson, Arizona: CAT Vehicle Research
Experience for Undergraduates, 2019. [Online]. Available: http:
//dx.doi.org/10.13140/RG.2.2.35628.10885

[30] H. Mason, J. MacInnes, and L. Bentley, Hannah Mason CAT
Vehicle REU 2018, 2018. [Online]. Available: https://www.youtube.
com/watch?v=fAslkEbnBQI

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1659428
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1659428
https://web.archive.org/web/20190112194639/https://www.hackster.io/kemfic/simple-lane-detection-c3db2f
https://web.archive.org/web/20190112194639/https://www.hackster.io/kemfic/simple-lane-detection-c3db2f
https://web.archive.org/web/20190112194729/https://www.hackster.io/kemfic/curved-lane-detection-34f771
https://web.archive.org/web/20190112194729/https://www.hackster.io/kemfic/curved-lane-detection-34f771
https://web.archive.org/web/20190112195129/https://pubweb.eng.utah.edu/~hamburge/
https://web.archive.org/web/20190112195129/https://pubweb.eng.utah.edu/~hamburge/
http://dx.doi.org/10.13140/RG.2.2.35628.10885
http://dx.doi.org/10.13140/RG.2.2.35628.10885
https://www.youtube.com/watch?v=fAslkEbnBQI
https://www.youtube.com/watch?v=fAslkEbnBQI

	Introduction
	Related Work
	Mathematical Preliminaries
	Approach and Implementation
	Color Filtering with Adaptive HSL Thresholds
	Applying Inverse Perspective Transform
	Using the Final Image for Lane Following

	Conclusion and Future Works
	References

