
Real-Time Traffic Lights Identification using

YOLOv3 Algorithm For Autonomous Vehicles

Rachel Kozel, and Naeemah Robert
School of Electrical and Computer Engineering

University of Arizona, USA
August 12, 2020

1



1 Abstract

Safety has always been a priority in automobile manufacture. Traffic light
detection plays a major role in regards to safety in autonomous vehicles. Previ-
ous methods involved utilizing a combination of image processing and training
a neural network model. Those methods were not fully successful as they pre-
sented limitations such as trouble detecting yellow and arrow traffic lights, the
inability to identify a traffic light from a few pixels due to long distances, and the
obstruction of traffic lights causing failure of detection. We propose to identify
traffic lights and their states in both urban and suburban areas by developing
a deep learning model utilizing a YOLOv3 model. Additionally, we will use the
large dataset of traffic light images from the ’Bosch Small Traffic Lights Dataset’
to train the YOLOv3. Our proposed method will be successful because a better
processed dataset indicates traffic lights in busier environments, and a balanced
dataset allows the model to be better trained at identifying traffic signals and
their status. The success of our proposed method will benefit autonomous ve-
hicles’ feasibility by improving safety at intersections. The risks of this method
include missing potential traffic signals which could lead to potential accidents.
We will use a camera that will record the data that will later be processed. The
mid-term check for success is accurate detection of traffic lights in ROS simula-
tions, and the final check for success is the successful test drive of University of
Arizona’s CAT Vehicle by detecting traffic lights at intersections.

Figure 1: This is the University of Arizona CAT vehicle.

2 Introduction

Object detection has been a field within signal processing that has been in-
vestigated for a while. Although there are different image processing methods,
machine learning has increasingly been used lately thanks to the developments
in that field over recent years. Different neural networks have been constructed
and tested out such as Regional Convolutional Neural Networks (RCNN), Fast
RCNN, Faster RCNN, Mask RCNN, and You Only Look Once (YOLO), which
all yield different results in varying circumstances [1]. Approaches also have been
made to combine image processing with deep learning by using image processing

2



to preprocess the data before feeding it into a neural network [1][2][3][4][5][6][7].
This often yields better results that just using one of those formerly mentioned
methods alone, especially when variables like dataset size, object size, and vary-
ing illumination have been items that have inhibited object detection [1][6]. In
the situation that our team deals with of detecting traffic lights, those variables
are key factors that are still at play in addition to the numerous states that
need to be detected for later decision making. Problems have risen over the
years with detecting different states because of the lack of a balanced dataset
[6]. This occurs because the high prevalence of red traffic lights (TLs) compared
to yellow or arrow TLs and is often a topic addressed in the results of different
papers as lowering the accuracy of neural network models [8]. Another situation
that is brought up in detection of TLs is constructing a model that is usable for
autonomous vehicles in real-time [8][6]. This affected the decision of the model
that we ended up using. We found that we had to switch from using the Mask
RCNN that prioritizes accuracy but sacrifices real-time capabilities to use the
YOLOv3, which does detection in real-time. The goal was to achieve real-time
detection and try to train the model with anchors suited for the dataset even
though the dataset used did not have the length and potentially balance that
will be needed for accuracy.

3 Background

Previous research focuses on using image processing and deep learning. Im-
age processing-based methods often used transformation of the colorspace and
adaptive templates to detect the TLs [8]. The colorspace conversion in [8] used
a grayscale transformation and detective step and the adaptive template did
the identification [8]. Another method implemented by [9] used the mapping of
TLs done by GPS to help track the TLs that could potentially be encountered.
This allowed them to not miss TLs, which was their goal [9]. In [10] they used a
similar method by using the database of already mapped TLs to have a digital
map that would help localize the TLs position. The Blob detector and the Cir-
cular Hough Transform were used to help find candidate objects, and then the
light color was classified with a confidence and probability attached that were
determined by with prior information such as the digital maps [10]. The relative
position of the TLs from each other and their respective states helped find the
probability of an arrow light [10]. In [11] they focused on solely detecting an
object and used gray-scaling as their primary color processing method. They
did shape detection and edge detection also with the Circular Hough Transform,
but it was not always helpful with overlapping objects that they were trying to
count in MATLAB [11].

Most deep learning methods used preprocessing methods that had their roots
in image processing. Although [3] used a Convolutional Neural Network (CNN),
they used it to detect text from images by using corner edge detection and
position-sensitive segmentation. Colorspace transformations like HSV [2][4] and

3



HSI [6] are popular since they separate the varying illumination component
from the chromatic components to help find candidate regions. In [2] they also
used a Maximally Stable Extremal Region (MSER) to help shrink down the
possible areas for TL structures before sending the information to a Histogram
of Oriented Gradients (HOG) to extract the features that would be confirmed
with a Support Vector Machine (SVM). This was done as preprocessing before
sending the results to a CNN to identify the state of the TL in the image
[2]. The SVM was also utilized in addition to Gaussian blurring and the HSV
transformation in [4] where they used the LISA TL dataset, but in this method
they compared the SVM to an artificial neural network, Naive Bayes method,
and Random Forest (RF) and found the SVM yielded the best result at the
time. Other sources like [7] did object localization and received edge information
from Generic Edge Tokens and used a Best First Search algorithm to assist in
adjusting it to get scores from the Deep CNN. Another Deep CNN-based model
was used in [6] but they also did the HSI color-space to remove the varying
illumination problems. What they ended up recommending was they needed
more TL cases, though, with worse lighting conditions to better help the dataset
[6]. Another suggestion in [5] was that preprocessing methods often improved
the results, and that when they were used in combination with one another,
it improved the results. The method used in [1] involved cropping, resizing,
and subtracting the RGB pixel values from the mean for preprocessing before
sending the result to a Single-Shot Detector (SSD) to determine the candidates
then assign points according to a reward system to root out false positives.

With all of this in mind and considering the time constraints after the inade-
quacy of using Mask RCNN, the ultimate decision was made to implement the
YOLOv3 algorithm since it was one that could run in real-time, good accuracy,
and ease of implementation within the short time frame.

4 Methodology

In our research project, we proposed at first to use the Mask Region-Based
Convolutional Neural Network (Mask RCNN). The Mask RCNN is the last
variant of RCNN which was introduced in 2018 by Hermenn et al. in [12].
Mask RCNN is used for object detection and object segmentation. In other
words, Mask RCNN is able to detect different objects in one image and give
the classes, the bounding boxes, and the masks of the detected objects in the
images [13] [14]. Additionally, we decided to use the Mask RCNN because
it involves a region proposal algorithm to better speed up the time taken to
train as well as faster identification. The additional reason for the choice of the
region proposal algorithm was because it involved computing the probability an
object of a specific class was contained within that region [15]. It continues to
compute and shrink down the number of regions that have lower probability
until a few remain above a certain threshold, which will constitute the mask
[15]. This appeared to be beneficial for the detection of TLs because their

4



higher probability at appearing in specific locations of image frames. Code
already exists for this algorithm that had simple modifications for the training
of multiple classes, which made it seem ideal for our team’s purposes.

Our work was done on a virtual machine in Vmware Workstation Player
15 with Ubuntu 18.04. In order to train our model, we used the “Bosch
Small Traffic Lights Dataset” that was previously used in [16]. The dataset
came with 5093 images and their corresponding annotation files. The annota-
tion files contain thirteen classes and the coordinates for the bounding boxes.
We used previous Mask RCNN models in [13] and made modifications accord-
ing to the Bosch dataset. In [13], they used a Kangaroo Dataset for which
we had to replace with the traffic lights dataset. We loaded the dataset we
were working with by adding the corresponding classes to the dataset as it
was done in [17] and in https://stackoverflow.com/questions/59811406/

adding-multiple-classes-in-mask-r-cnn, then defined the number of im-
ages that would be used for training and testing, extracted the bounding boxes
with the coordinates from the annotation files, loaded the masks, and finally
displayed the images with the boxes, masks, and classes.

After we loaded the masks on the images in our dataset, we moved on to the
training process. We specified the number of classes and epochs which were 13
and 60 respectively. For the training process, we downloaded the COCO weights
because we were training our model based on the Mask RCNN COCO dataset.
As the training process began, some of our computers could not keep up with
the GPU being used up to ninety percent of its performance. To overcome this
problem, we signed into the University of Arizona’s ECE server and moved the
training process to the University of Arizona’s High Performance Computing
(HPC) server. HPC is a network of computers which can handle big computer
jobs such as the training of a model. With those computers combined, the jobs
are processed much faster. In our case, the training process took 3 hours, which
otherwise would have taken us at least three days. We then proceeded with
the testing of the trained model with the images that were set for testing in
the beginning. The model was able to detect the different states of the TLs in
the images we previously set for testing (see fig.2). However, we wanted the
confidence to be at least ninety percent and up.

Figure 2: Testing of Trained Model.

5



After our neural net model was trained, we wanted to use it for real-time TL
detection. In order to do so, we used the OpenCV library and matplotlib with
our trained model in addition to slight modifications as it was implemented in
[18]. Our model was then able to detect TLs in images found on Google (see
fig.3). However, with the Mask RCNN model, the real-time detection was very
slow and impossible. Therefore, we had to switch our approach to a different
machine learning model in order to satisfy our real-time criteria.

Figure 3: Testing of Trained Model on Google Images.

After realizing that Mask RCNN was not giving the results we were expecting,
we switched to YOLOv3. YOLOv3 is the latest variant of YOLO-which stands
for You Only Look Once- that was introduced in 2018 in [19]. YOLO is an
object detection algorithm known for its detection speed and the ability to
detect objects in video feed or live feed on webcam [13]. We were able to find
Yolov3 models which have been previously implemented in [13]. We started
by downloading the yolov3 weights then ran the code to see the results of its
implementation with Keras. As the results met our expectations, we changed
some data in the configuration and the voc files downloaded from this Github
repository in https://github.com/experiencor/keras-yolo3.git to adjust
the code to our dataset. We added the thirtheen classes of our dataset and
developed the anchors based on our dataset. Once again, we continued with the
training process on the UA HPC server for a faster training time. After training
the model for 24 hours, we moved on with the testing process. We wanted to
test the real time detection of our model and it was able to detect traffic lights
with a confidence between forty and fifty percent. We continued the training
process because, as previously mentioned, we wanted the confidence between
ninety and ninety nine percent.

6



5 Results

The YOLOv3 model has been trained over 3 times for over 100 epochs. It is
able to detect red and green traffic lights (see fig.4). It takes more training time
for the YOLOv3 model than the Mask RCNN model to give a confidence level
between ninety percent and ninety-nine percent. Additionally, the YOLOv3
model has difficulties detecting yellow lights and arrow lights (see fig.5). It is
one of the problem we did not have a chance to resolve as it requires to train the
model for a longer time and on a more balanced dataset. Moreover, we tested
the model for real-time traffic light detection. The results are promising as it is
detecting traffic lights where they are placed on the road, and it detected red and
green lights with a close level of accuracy. It also did not detect vehicle tail lights
as traffic lights. We noticed once more the struggle the model has for detecting
yellow and arrow lights in addition to trying to do this on a lower-quality, regular
laptop GPU. The lack of a stronger GPU made real-time detection with an HD
1080p Logitech webcam have some lag.

Figure 4: Testing of Trained
Yolov3 Model on Google Im-
ages.

Figure 5: Testing of Trained
Yolov3 Model on Google Im-
ages.

6 Conclusion

Upon examining the results, our team has learned that the Mask RCNN
was not adequate for our purposes based on the criteria it did not function
in what we considered real-time. That prompted the switch to the YOLOv3
model. Based on the results discussed, our team has established that it does
function close to in real-time despite some lag, which is the main criteria. It
does detect TLs with okay accuracy despite the distance of the TL from the
camera source. The test on our team’s personal webcams due to the COVID-19
crisis shows that it does detect TLs on Google images, and upon taking the
webcams and computers to test live, it also detects TLs with similar accuracy.
The main challenges our team could not overcome in time consist of the struggle
to recognize yellow and arrow lights as well as the lag in our webcam feed. This
is a source for further research that we would recommend for future research

7



with a more balanced dataset, more training time, and a stronger GPU. Future
work could also consist of testing this model in different weather conditions and
illumination to confirm its integrity outside the indoor environment as well as
with more diverse datasets in different regions. Our team would like to thank
the University of Arizona and our mentor Safwan for giving us the opportunity
to be able to work on this project and learn about this topic and its importance
to autonomous vehicles.

8



References

[1] J. Kim et al. “Deep Traffic Light Detection for Self-driving Cars from a
Large-scale Dataset”. In: 2018 21st International Conference on Intelli-
gent Transportation Systems (ITSC). 2018, pp. 280–285.

[2] S. Saini et al. “An efficient vision-based traffic light detection and state
recognition for autonomous vehicles”. In: 2017 IEEE Intelligent Vehicles
Symposium (IV). 2017, pp. 606–611.

[3] Ulagamuthalvi, J. B. J. Felicita, and D. Abinaya. “An Efficient Object
Detection Model Using Convolution Neural Networks”. In: 2019 3rd In-
ternational Conference on Trends in Electronics and Informatics (ICOEI).
2019, pp. 142–147.

[4] J. L. Binangkit and D. H. Widyantoro. “Increasing accuracy of traffic light
color detection and recognition using machine learning”. In: 2016 10th In-
ternational Conference on Telecommunication Systems Services and Ap-
plications (TSSA). 2016, pp. 1–5.

[5] D Anggraeni et al. “Enhancing CNN with Preprocessing Stage in Auto-
matic Emotion Recognition”. In: Procedia Computer Science 116 (2017),
pp. 523–529.

[6] Z. Ouyang et al. “Deep CNN-Based Real-Time Traffic Light Detector for
Self-Driving Vehicles”. In: IEEE Transactions on Mobile Computing 19.2
(2020), pp. 300–313.

[7] E. Etemad and Q. Gao. “Object localization by optimizing convolutional
neural network detection score using generic edge features”. In: 2017 IEEE
International Conference on Image Processing (ICIP). 2017, pp. 675–679.

[8] R. de Charette and F. Nashashibi. “Traffic light recognition using image
processing compared to learning processes”. In: 2009 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. 2009, pp. 333–338.

[9] J. Levinson et al. “Traffic light mapping, localization, and state detec-
tion for autonomous vehicles”. In: 2011 IEEE International Conference
on Robotics and Automation. 2011, pp. 5784–5791.

[10] Keisuke Yoneda et al. “Robust traffic light and arrow detection using
digital map with spatial prior information for automated driving”. In:
Sensors 20.4 (2020), p. 1181.

[11] R Hussin et al. “Digital image processing techniques for object detection
from complex background image”. In: Procedia Engineering 41 (2012),
pp. 340–344.

[12] Kaiming He et al. “Mask R-CNN”. In: CoRR abs/1703.06870 (2017).
arXiv: 1703.06870. url: http://arxiv.org/abs/1703.06870.

[13] Jason Brownlee. “Deep Learning for Computer Vision: Image Classifica-
tion, Object Detection, and Face Recognition in Python”. In: Machine
Learning Mastery, 2019, pp. 368–388, 405–443.

9



[14] X Zhang. Simple Understanding of Mask RCNN. 2018.

[15] Pulkit Sharma. “Computer Vision Tutorial: Implementing Mask R-CNN
for Image Segmentation (with Python Code)”. In: (2019). url: https:
/ / www . analyticsvidhya . com / blog / 2019 / 07 / computer - vision -

implementing-mask-r-cnn-image-segmentation/.

[16] Dennis Hein. “Traffic Light Detection with Convolutional Neural Networks
and 2D Camera Data”. PhD thesis. fu-berlin, 2020.

[17] SriRam Govardhanam. “Training your own Data set using Mask R-CNN
for Detecting Multiple Classes”. In: (2020). url: https://medium.com/
analytics-vidhya/training-your-own-data-set-using-mask-r-

cnn-for-detecting-multiple-classes-3960ada85079.

[18] Ablajan Sulaiman. “Image, Video and Real-Time Webcam Object De-
tection & Instance Segmentation using Mask R-CNN”. In: (2020). url:
https://medium.com/@toarches/image- video- and- real- time-

webcam-object-detection-and-instance-segmentation-with-mask-

rcnn-37a4675dcb49.

[19] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”.
In: arXiv preprint arXiv:1804.02767 (2018).

10


