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Abstract—Cooperative driving and vehicular network
simulations have done huge steps toward high realism. They
have become essential tools for performance evaluation of
any kind of vehicular networking application. Yet, cooperative
vehicular applications will not be built on top of wireless
networking alone, but rather fusing together different data
sources including sensors like radars, LiDARs, or cameras. So
far, these sensors have been assumed to be ideal, i.e., without
any measurement error. This paper analyzes a set of estimated
distance traces obtained with a LiDAR sensor and develops a
stochastic error model that can be used in cooperative driving
simulations. After implementing the model within the PLEXE
simulation framework, we show the impact of the model on a
set of cooperative driving control algorithms.

I. INTRODUCTION AND RELATED WORK

Performance evaluation for cooperative driving and vehicular
networking applications has become crucial in proving the
benefits of such applications in terms of safety, efficiency,
and fuel consumption. The reasons are simple. Simulations are
flexible and they can be used to assess any kind of performance,
from the wireless physical layer up to the application layer.
They are fast, cheap, repeatable, controllable, and they permit
parametric studies. It is now a matter of a few minutes to setup
a set of simulations exploring hundreds of different parameter
combinations and, by using high performance computing
clusters, a matter of a few hours to run them and analyze their
outcome. Last but not least, they are “safe”, in the sense that
researchers can show how effective an application is in avoiding
or mitigating the damages of an impact without harming real
persons. Clearly, simulations use models, thus giving up some
real world details for the sake of mathematical representability
and lower complexity.

The highest level of realism to evaluate feasibility and
performacne is obtained through Field Operational Tests
(FOTs), where real vehicles and real hardware are employed [1],
[2]. Needless to say, FOTs have huge costs in terms of
personnel, equipment, and man-power. It is true that they
can provide the highest level of realism, but controlling the
environment is an issue, and thus experiments repeatability
is not trivial. Moreover, scalability is also an issue. Although
FOTs employing hundreds of vehicles exist [3], they are rare,
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if not unique. Simulation can be used to perform a first broad
analysis, and then FOTs can be exploited to verify the results
on a subset of configurations. Rather than competing tools,
simulations and FOTs complement each other.

The research community can choose between several dif-
ferent simulation frameworks (Veins [4], VSimRTI [5]), mo-
bility simulators (SUMO [6], VISSIM [7]), communication
models [8]–[10], just to list a few of them. Yet, in the
literature body of vehicular simulation models, sensor studies
are missing. It is very difficult to find technical specifications
of commercial sensors, and whenever found, the details are
clearly not enough. For example, the commercial brochure of
the Bosch LRR4 radar1 indicates an accuracy of ±0.12 m and
±0.11 m/s for distance and speed, respectively, but how this
error is distributed is not known. In [11], a radar is used to
measure distance and relative speed to the vehicle ahead. The
authors list a range and a range-rate accuracy of ±0.5 m and
±0.12 m/s, respectively, but again the distribution of the error
is not specified. Mathematical models are not only required
in academic research, but also by the automotive industry for
system prototyping [12].

Needless to say, sensors play a crucial role in the devel-
opment of future cooperative driving applications, as they
complement the view of the surrounding environment obtained
through wireless communication. As an example, sensor data is
fundamental to properly implement cooperative maneuvers [13]
or to measure the distance to vehicles ahead in automatic
emergency braking applications [14]. Faults or measurement
errors can have a dramatic impact on the performance.

Following these motivations, we perform a stochastic analysis
of real-world LiDAR traces to understand the nature of the
error and to develop a model for the community. We perform
the analysis for a specific LiDAR model. The derivation of
a generic model is out of the scope of this paper, and would
be meaningless without a standardization process defining the
minimum performance requirements for safety applications.
As an example, vendor-independent bit error rate models for
IEEE 802.11 exist because the standard, together with MAC
and PHY specifications, defines the requirements to be WiFi
certified.

1 https://tinyurl.com/bosch-lrr4, visited the 23rd of August, 2018.

2018 IEEE Vehicular Networking Conference (VNC)

978-1-5386-9428-2/18/$31.00 ©2018 IEEE



The contributions of this paper are the following:
• We analyze real-world LiDAR traces to understand the

underlying error model;
• On top of our analysis, we build a stochastic error model

that is capable of reproducing measurement errors; and
• We implement the model within the PLEXE simulation

framework and show the impact on a set of control
algorithms.

II. DATASET DESCRIPTION

In this section we briefly describe the dataset used to derive
the stochastic error model. The dataset is the result of a
set of experiments performed in [15]. The paper proposes
two autonomous control systems that aims at dampening
traffic stop-and-go waves (a.k.a. shock waves). The control
systems are implemented on the Cognitive and Autonomous
Test (CAT) vehicle developed by University of Arizona and
their effectiveness is proven in a set of experiments performed
on a circular test track. The experiments are conducted
using 22 vehicles, and only one of those (the CAT vehicle)
actively dampens stop-and-go waves via the proposed control
algorithms, showing the huge benefit that a single, intelligent
vehicle can provide to the overall traffic flow.

The autonomous controllers clearly require distance mea-
surements to the car ahead to compute a proper control action.
To this purpose, the CAT vehicle mounts a SICK LMS 2D
LiDAR. The LiDAR horizontally scans the environment 75
times per second producing a cloud of distance points, where
each point is associated with an angle. In the experiments, the
authors used the minimum distance point along the trajectory
as an estimate of the distance to the front vehicle, and filtered
the time series using a Kalman filter to remove the noise. In
this paper we study the filtered data, assuming to work with
an automotive LiDAR product that already provides filtered,
but still imperfect samples. Analyzing the stochastic properties
of the raw cloud point samples is left as a future work.

The data collected during the experiment is freely available
for download2. The dataset includes the data from three
experiments, namely experiment A, B, and C. The autonomous
control strategies have been tested only in experiments A
and C, while in experiment B one of the proposed strategies
was performed by a trained human driver without the help of
automation. For this reason, only the traces of experiments A
and C include LiDAR data that we can use for our purpose.

In addition to the LiDAR traces, the dataset includes data
collected from the On-Board Diagnostics (OBD) port, as well
as the position and the speed of the vehicles estimated using a
360-degree camera positioned in the center of the circle. By
using image processing and clustering techniques, the authors
can estimate the position, the speed, and the acceleration of
each vehicle on the ring [16]. We decided not to use the
distance estimated using the camera as the ground truth, as this
also intrinsically includes measurement errors, which could
falsify our analysis.

2 https://doi.org/10.15695/vudata.cee.1
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Figure 1: LiDAR estimated distance and Butterworth filtered distance
traces for experiment C.

For this reason we use a fifth-order Butterworth low-pass
filter with a cutoff frequency of 1 Hz to clean the trace. After
filtering the trace we compensate for the delay introduced by
the filter to obtain our ground truth. This processing choice is
clearly non-optimal, but in the absence of a real ground truth
it can still provide some insights on the error process.

III. TRACES ANALYSIS

We analyze the estimated LiDAR distance traces recorded
during the experiments in [15]. Figure 1 shows the LiDAR
distance and the filtered distance traces for the CAT vehicle in
experiment C. Figure 1a shows the entire trace. It is not possible
to distinguish between the original and the filtered traces, but
some errors in the form of spikes can clearly be seen. Figure 1b
shows a detailed view on a portion of the trace, where it is
possible to understand how the filter acts on the signal. The
filter smoothing on spikes is not ideal due to the large error
magnitude, while it properly cleans the smaller errors between
66 s and 70 s. Finally, Fig. 1c shows the characteristic shape
of spike errors, i.e., a large positive peak error followed by an

2018 IEEE Vehicular Networking Conference (VNC)



0 50 100 150 200

-4

-2

0

2

4

6

8

10
m
ea
su
re
m
en
t
er
ro
r
(m

)

time (s)

(a) whole trace

90 95 100 105

-0.2

-0.1

0.0

0.1

0.2

m
ea
su
re
m
en
t
er
ro
r
(m

)

time (s)

(b) detailed view on a shot-free portion

28 29 30 31 32 33

-4

-2

0

2

4

6

8

10

m
ea
su
re
m
en
t
er
ro
r
(m

)

time (s)

(c) detailed view of shot errors

Figure 2: Measurement error trace for experiment C. The highlighted
areas in (a) indicates the portions used to perform model estimation
of the shot-free error.

exponential decay. This kind of error is known as exponential
shot-noise [17]–[19]. Shot-noise peaks are present in the raw
LiDAR trace, while the exponential decay is caused by the
Kalman filter.

By subtracting the filtered trace from the original one, we
obtain an estimate of the measurement error (Figs. 2 and 3).
Observing the whole trace (Figs. 2a and 3a) it is possible
to clearly spot shot-noise errors, but it is nearly impossible
to understand the nature of the error. Observing both a shot
(Figs. 2c and 3c) and a shot-free (Figs. 2b and 3b) portion
in detail we can start drawing some assumptions. We believe
the error is split into two components. Measurement errors in
shot-free portions are driven by a correlated stochastic process,
while shot-noise errors seem to occur randomly and to quickly
fade away. In fact, shot-noise events are often modeled using
a homogeneous Poisson point process [18] regardless of the
application field.

We thus assume that the error process is of the form

ε[k] = εc[k] + εs[k], (1)
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Figure 3: Measurement error trace for experiment A. The highlighted
areas in (a) indicates the portions used to perform model estimation
of the shot-free error.

where k is the sample index, while εc and εs are the processes
driving the correlated and the shot errors, respectively.

A. Correlated Noise Estimation

We assume the correlated error to be a first-order autore-
gressive process (AR(1)) of the form

εc[k] = ρεc[k − 1] +Nc[k], (2)

where ρ is the correlation coefficient and Nc the innovation
process of the error.

To characterize εc, we assume Nc has zero mean and we
estimate ρ by computing the autocorrelation with a lag of
1 sample on shot-free portions of the error. The considered
portions are highlighted by boxes in Figs. 2a and 3a. The
autocorrelation for each portion i of ε is computed as

ρi =

1
|εi|−1

∑|εi|−1
k=1 εi[k] · εi[k − 1]

1
|εi|
∑|εi|−1
k=0 εi[k]2

(3)
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Experiment ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

A 0.997 0.991 0.991 0.983 0.991 0.996
C 0.997 0.993 0.998 0.995 0.996 0.995

Table I: Estimated values of ρ.
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Figure 4: Nc obtained after applying decorrelation (Eq. (4)) on a
subset of the samples.

Table I shows the estimated values of ρ for the correlated
portions of the trace: they clearly indicate a high correlation.
We compute the estimated innovation process Nc by computing

Nc[k] = εc[k + 1]− ρ̄εc[k], k = 0, . . . , |εc|−1 (4)

where ρ̄ is the average of the values in Table I. We clearly
perform this computation only on the portions of the signal
highlighted in Figs. 2a and 3a.

Figure 4 shows a subset of the samples in Nc. Although
most of the correlation is removed, there is some residual
correlation. This suggests that the order of the autoregressive
model might be higher than one. In this preliminary work,
however, we maintain an AR(1) process as the underlying
error model and perform a distribution fitting on Nc. In
particular, we use a maximum-likelihood parameter estimation
on different distributions and choose the one that maximizes
the log-likelihood.

Distributions defined on the whole real domain poorly fitted
the dataset. For this reason, we also perform fitting on the
absolute value of the samples in Nc. The Nc process can then
be generated by multiplying the samples drawn from the fitted
distribution by B · 2− 1, where B is Bernoulli distributed with
parameter p = 0.5.

The distribution with the highest log-likelihood resulted to
be a generalized Pareto distribution with location µ = 0, scale
σ = 0.0036, and shape ξ = 0.0913. Our final autoregressive
process is thus

Nc[k + 1] = 0.9936Nc[k]+

GP(µ = 0, σ = 0.0036, ξ = 0.0913)·
(B(p = 0.5) · 2− 1), (5)

where GP and B indicate two random number generators
according to a generalized Pareto and a Bernoulli distribution,
respectively. As the fitting has been performed with Matlab, we

report here the probability density function of the generalized
Pareto distribution for ξ > 0 and x > µ:

f(x|µ, σ, ξ) =
1

σ

(
1 + ξ

x− µ
σ

)−1− 1
ξ

. (6)

To generate generalized Pareto distributed samples, we compute
the Cumulative Density Function (CDF) (F (x)) and use the
inverse CDF method on its inverse (F−1(x)):

F (x|µ = 0, σ > 0, ξ > 0) = 1−
(

1 +
ξx

σ

)− 1
ξ

(7)

F−1(x) = −
σ
(
(1− x)ξ − 1

)
(1− x)

ξ
ξ

. (8)

B. Shot-noise Estimation

The next step is to estimate shot-noise. The number of shots
in the dataset is limited, so a proper fitting is not possible. The
contribution of this paper is the framework used to estimate
the nature of shot-noise. In this preliminary work we estimate
the interarrival time of the homogeneous Poisson process, the
exponential decay parameter, and the amplitude of the shots
for the limited amount of samples we have. By using data
points from additional measurement campaigns, we can apply
the same method and obtain a more statistically confident
estimation.

The Poisson distribution is defined as

P(N = n,Λ) =
Λn

n!
e−Λ. (9)

The process computes the probability that the value of the
random variable N is n. Λ is the expected value of the random
value and it is defined as Λ = νλ, where ν is the time span
and λ is the average number of occurrences per time unit.

To estimate λ, we simply count the number of shot-noise
points in our trace and divide it by the time duration of the
trace. Given the nature of shot-noise, we can easily identify
them using the derivative of the trace. In particular, we extract
the index of shot-noise points using the following set definition:

{k | εs[k]− εs[k − 1] > 1}. (10)

Using the traces from experiments A and C, we count 52
samples over 686 s, obtaining λ = 0.0758. Given that our
LiDAR has a sampling rate of 75 Hz, we can compute

Λ = νλ =
0.0758

75
' 0.001. (11)

This means that, on average, we will have one shot error every
1000 samples. It is worth noticing that this estimation is not
completely correct. Figure 2c clearly shows that shot errors
sometimes appear in bursts. A proper way to study them would
be to first compute the interarrival time for bursts, and then
study the characteristics of each single burst. Given the limited
amount of samples, however, the results would be statistically
meaningless, so we leave this task for future work.

To estimate the exponential decay, we consider three points
of a shot noise. The value of the shot sk where the shot starts,
and the values of the signal before and after the start (sk−1 and
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23.408 23.560 23.973 23.358 23.913 24.106 22.715

Table II: Estimated values of τ .

sk+1, respectively). The value sk−1 is used as the base value,
i.e., the value on top of which the shot noise is built. This is
assumed to be constant over the three samples. Although this
is not exactly true, we can assume that this value does not
change significantly in the time span of three samples (2.7 ms).
The value sk+1, instead, is used to estimate the exponential
decay parameter τ .

To compute τ we can use the following system of equations:{
sk = sk−1 +N0

sk+1 = N0e
− τ

75 + sk−1,

where N0 is the amplitude of the shot noise. Solving for N0

and τ we obtain

τ = − ln

(
sk+1 − sk−1

sk − sk−1

)
· 75 (12)

We take a subset of 7 isolated shot noise points, i.e., the
ones that do not belong to a burst (Fig. 2c) and use Eq. (12) to
compute τ . Table II shows the values obtained. We take their
average as the estimated value of the exponential decay, i.e.,
τ = 23.576.

Finally, we need to estimate the amplitude of shot noise.
We can obtain shot noise amplitude for isolated shots in a
trivial manner, i.e., simply computing sk−sk−1. During bursts,
however, this task becomes non trivial, as each shot is the sum
of multiple shot noises plus the time varying correlated noise.
While it is possible to estimate the decay of each shot, it is
not possible to know the value of the correlated noise in that
point. For this reason, we only consider isolated shot noise
samples and the ones at the beginning of a burst.

In the dataset there are 16 points matching this criterion
and their average amplitude is 4.364. These points are clearly
not enough to draw any conclusion on the distribution of the
amplitudes. In here, we make the strong assumption that the
amplitude is exponentially distributed with a mean of 4.364.

The Poisson process is time-continuous, so in the sampled
process we consider there is a non negligible probability that
more than one shot arrives between one sample and the next,
accumulating the error on this latter sample. Thus the amplitude
of the shot noise on a sample can be modeled with an Erlang-n
distribution, where n is the number of shots in the sampling
interval, as each shot has an exponentially distributed amplitude.
By putting together the interarrival distribution, the decay
exponent, and the amplitude distribution, we can construct
the shot-noise process as

εs[k + 1] = E(n = Pois(Λ = 0.001), µ = 4.364)+

εs[k]e−
23.576

75 . (13)

In Eq. (13), E indicates the generator of Erlang-distributed
samples, i.e., the sum of n independent exponential distributions
with mean µ. The Pois random variable extracts the number
of shot events occurring at sample k. The Erlang distribution
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Figure 5: Synthetically-generated trace.

is defined when n is a positive integer; with a little abuse of
notation, we set E(n = 0, µ) = 0.

As a final remark, it should be noted that the processes
defined in this section are valid for a sampling rate of 75 Hz.
When changing the sampling rate, the parameters of the
distributions should be scaled accordingly.

Figure 5 shows a synthetically-generated trace using the
model designed in this section. The figure shows that the model
properly handles correlation and shot-noise. The correlated
error process in Fig. 5a, however, seems to lead to smaller
errors compared to the original process (Figs. 2a and 3a). This
might be caused by the low order of the autoregressive process,
indicating the need for further future investigation.

IV. IMPACT ON COOPERATIVE DRIVING SIMULATIONS

We implement the model designed in Section III within
the PLEXE simulator [20]. PLEXE is a cooperative driving
simulator with a special focus on platooning that features
realistic vehicular networking models, as well as realistic
vehicle dynamics and platooning control algorithms. The
simulator does not include error models either for sensors, or
for GPS, and studies using this simulator assume measurements
to be error-free [21], [22].

We run two set of simulations using three different control
algorithms. In the first set we inject a platoon of 8 cars with
the leader following a constant speed profile, i.e., vehicle
dynamics are not disturbed. The inter-vehicle distance is set
to the steady-state distance of the chosen control algorithm.
Ideally, the distance should remain constant throughout the
whole simulation, so the outcome will show the impact of
the model. In the second set, instead, the leader follows a
sinusoidal profile.
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Parameter Value

m
ob

ili
ty

Leader’s average speed 100 km/h
Oscillation frequency 0.2 Hz
Oscillation amplitude ' 95 to 105 km/h
Platoon size 8 cars
Car length 4 m
Simulation sampling rate 100 Hz
LiDAR sampling rate 75 Hz

co
nt

ro
lle

rs

Engine lag τ 0.5 s
Stand-still distance dst 2 m
ACC λ 0.1
ACC headway time T 0.3 s (10.33 m @ 100 km/h)
PATH weighting factor C1 0.5
PATH bandwidth ωn 0.2
PATH damping factor ξ 1
PATH constant distance d 5 m
Ploeg headway time T 0.5 s (15.89 m @ 100 km/h)
Ploeg kp 0.2
Ploeg kd 0.7

Table III: Network and road traffic simulation parameters.

We consider three control algorithms, namely a standard
Adaptive Cruise Control (ACC), and two Cooperative Adaptive
Cruise Control (CACC) algorithms. All control algorithms
implement automated car following, i.e., given contextual
information such as distance to the front vehicle, speed and/or
acceleration of other vehicles, they compute the acceleration
required to reach a certain target, which in this case is simply
to maintain a predefined distance. The required acceleration
(or control input ui for vehicle i) is implemented by the
engine/braking system with a certain delay. This delay is
commonly modeled using a first order lag described by the
following differential equation [20], [23], [24]

dai(t)
dt

=
1

τ
(ui(t)− ai(t)) . (14)

In Eq. (14), ai(t) and ui(t) are the current and the desired
acceleration of vehicle i, respectively, while τ is the time
constant of the delay which is set to 0.5 s.

The difference between the three algorithms is in the design
and the performance. The ACC algorithm is defined in [23] and
its implementation details can be found in [20]. It follows a
constant time-headway spacing policy and uses a radar/LiDAR
system to estimate the distance and the relative speed to the
vehicle ahead. Its steady-state distance is defined as

d = T · v + dst, (15)

where T is the time headway in s, v is the cruising speed
in m/s, and dst is the stand-still distance (i.e., when speed
is zero) in m. The chosen headway time T is 0.3 s. This
choice of the parameter makes the ACC string-unstable, as the
required condition for string stability of this control system
is T ≥ 2τ [23]. The reason to have the system in unstable
conditions is to see how it reacts to LiDAR-induced perturbation
at steady state.

The two CACC algorithms we consider are the PATH’s
CACC [25] and the Ploeg’s CACC [24]. PATH’s CACC follows
a constant distance spacing policy, i.e., the distance does not
depend on the cruising speed as in Eq. (15). This is made
possible by the use of Inter-Vehicle Communication (IVC).
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Figure 6: Impact of the error model on the control dynamics of an
unstable ACC in steady-state conditions.

Through IVC, vehicles exchange information such as current
acceleration and speed, making it possible to improve system’s
reaction time and thus safely reduce the distance. In particular,
PATH’s CACC exploits leader and front vehicle information to
compute the control action. The constant inter-vehicle distance
is set to 5 m. Ploeg’s CACC, instead, exploits a constant time-
headway spacing policy as the ACC. Differently from the latter,
the time headway T is much smaller, as the control system
exploits the desired acceleration of the front vehicle as a feed-
forward term. For Ploeg’s CACC, T is set to 0.5 s. Differently
from the ACC, this control algorithm is string-stable even for
such a small headway time.

All the algorithms exploit a radar or a LiDAR system to
estimate distance and relative speed to the front vehicle. In this
preliminary work, we assume the relative speed to be correct,
and we focus our attention on distance errors.

With respect to the dynamics, we assume the control system
to run at 100 Hz, while the LiDAR runs at 75 Hz. This simply
means that every 40 ms one LiDAR sample is kept constant, as
the control loop requires values faster than the rate the sensor
can produce them. With respect to communication, instead, we
assume vehicles to send wireless beacons including control data
with a rate of 10 Hz, although with no packet losses. Table III
summarizes the remaining simulation parameters.

A. Steady-state Simulations

Figure 6 shows the desired acceleration ui and the actual
acceleration over time for the 8 vehicles in the simulation using
a non-cooperative ACC. From the control input plot (Fig. 6a)
it is possible to spot positive acceleration spikes caused by
LiDAR shot-errors. These errors introduce perturbations in
the system which, due to the unstable configuration, tend to
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Figure 7: Impact of the error model on the dynamics of two different
CACCs in steady-state conditions. vi indicates the bumper to bumper
distance of vehicle i to vehicle i− 1.

be amplified by the following vehicles. This can be seen in
particular by observing Fig. 6b, which shows that, close to
shot-errors, there are some sinusoids that gets amplified by
vehicles at the tail of the platoon.

Figure 7 shows the actual inter-vehicle distance between the
vehicles in the platoon for the PATH and the Ploeg CACCs.
The imperfect LiDAR introduces some disturbance, causing
the inter-vehicle distance to float around the steady-state value.
The absolute error is in the order of 10-30 cm, so the impact is
limited. Yet, the shot LiDAR errors, which are always positive,
do not permit to the control system to stabilize the distance
around the target value.

B. Sinusoidal Simulations

Figure 8 shows the results for the PATH’s CACC for the
sinusoidal scenario, without and with the LiDAR error model.
Without the error model (Fig. 8a) the system properly dampens
the oscillations down the stream of vehicles, showing the classic
string-stable behavior. The error model (Fig. 8b) introduces
further disturbance, making it difficult to observe a clear
smoothing of the oscillations. Still, the system is pretty robust to
the errors introduced by the LiDAR, as the maximum tracking
error is in the order of 10 cm.

Similar conclusions hold for the Ploeg’s CACC (Fig. 9). The
LiDAR error model disturbs the ideal string-stable behavior
of Fig. 9a, but the impact is again limited. In particular, the
system still properly dampens the oscillations with only minor
errors.

V. CONCLUDING DISCUSSION AND FUTURE WORK

In this paper we analyzed a set of LiDAR distance traces
recorded during real-world experiments. After filtering the
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Figure 8: Impact of the error model on the dynamics of the PATH’s
CACC under sinusoidal disturbance. vi indicates the bumper to bumper
distance of vehicle i to vehicle i− 1.
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Figure 9: Impact of the error model on the dynamics of the Ploeg’s
CACC under sinusoidal disturbance. vi indicates the bumper to bumper
distance of vehicle i to vehicle i− 1.

traces to obtain the ground truth, we analyzed the stochastic
properties of the error. We have shown that the error is
composed of a correlated and a shot-noise process and we
separately analyzed the two components, deriving stochastic
properties and parameters for their synthetic generation. Finally,
we implemented the model within the PLEXE simulation
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framework showing its impact on three different control
algorithms and two driving scenarios. In both the steady-state
and the sinusoidal scenario the impact of the model is limited.
However, the model can definitely help in spotting instabilities
in control systems, as we have shown for the ACC in the
steady-state scenario.

The model presented in this work is preliminary and we
made some simplifying assumptions, so the impact of the
model might be underestimated. In our future work, we plan
to improve the model and get rid of these assumptions, which
we summarize here.

First, the lack of a ground truth is a major problem. The use
of a filter to obtain such a ground truth injects the dynamics of
the filter in the error model as, for example, the time correlation.

Second, we performed our analysis on the Kalman-filtered
points. While this is reasonable, filtering introduces delay which
cannot be analyzed in the absence of a synchronized ground
truth. Delays have huge impact on the performance of control
systems, so proper modeling is fundamental.

Third, we assumed a first order autoregressive model for the
correlated component of the error model. After removing the
correlation, the dataset still showed some residual correlation
which we did not account for. As a result, the synthetically-
generated traces have smaller absolute errors.

Fourth, the relative speed has been assumed to be perfectly
know. In reality, the relative speed is the derivative in time of
the distance, and the derivative is highly influenced by errors.
How to properly compute and filter the relative speed to be
included in the model is yet an open issue.

Finally, we considered shot-noise peaks to be independent,
while in the dataset they occur in bursts. As shot-noise
amplitude is relatively large, the occurrence of bursts can
lead to a large overestimation of the actual distance and might
cause a wrong control decision.

Addressing all these open points is fundamental to obtain a
trustworthy stochastic model, not only for LiDARs, but for all
automotive sensors.
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